Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên hai cạnh Ax, Ay của góc \(\widehat{xAy}\) đặt AM = 4 đơn vị, AN = 5 đơn vị. Kẻ đường cao AH của \(\Delta\)AMN.
Trên tia AI lấy điểm H sao cho AH = 6cm, qua H vẽ đường song song với MN cắt Ax, Ay lần lượt tại B và C => \(\Delta\)ABC thỏa mãn điều kiện để bài
Thật vậy:
MN // BC => \(\Delta\)AMN ∽ \(\Delta\)ABC => \(\dfrac{AM}{AN}=\dfrac{AB}{AC}=\dfrac{4}{5}\)
Vậy AH \(\perp\) BC, AH = 6cm => AH là đường cao.
+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
A′B′2+A′C′2 =B′C′2
=> A′C′2=B′C′2−A′B′2=152−92=144
=> A’C’ =12 (cm)
Trong tam giác vuông ABC có \(\widehat{A}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
BC2=AB2+AC2= 62+82=100
Suy ra: BC = 10 (cm)
Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)
Vậy ∆ A’B’C’ đồng dạng với ∆ ABC
Xét \(\Delta\)ABC có: D là trung điểm của AB
M là trung điểm của BC
\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DM\)//AC hay DM//AE
Ta có : M là trung điểm của BC
E là trung điểm của CA
\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)ME//AB hay ME//AD
Xét tứ giác ADME có: DM//AE(cmt)
ME//AD(cmt)
\(\Rightarrow\)ADME là hình bình hành
Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM
\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)
Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)
\(\Rightarrow\)ADME là hình thoi
Nếu \(\Delta\)ABC vuông tại A
\(\Rightarrow\widehat{A}=90^0\)
Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)
\(\Rightarrow\)ADME là hình chữ nhật
d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM
\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)
Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:
BC2=AB2+AC2
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)
Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm
Hình vẽ minh họa như sau:
• Cách dựng tam giác AB’C’
- Trên đoạn AB lấy điểm B’ sao cho AB’ = 3cm
- Trên đoạn AC lấy điểm C’ sao cho AC’ = 2cm
- Nối B’ và C’ ta được tam giác AB’C’ là tam giác cần dựng
• Cách dựng tam giác AB’’C’’:
- Trên tia đối của tia AB lấy điểm B’’ sao cho AB’’ = 3cm
- Trên tia đối của tia AC lấy điểm C’’ sao cho AC’’ = 2cm
- Nối B’’ và C’’ ta được tam giác AB’’C’’ cũng thỏa mãn yêu cầu của đề bài
• Cách dựng tam giác AB’C’ đã trình bày ở ý (a)
• Cách dựng tam giác AB’’C’’:
- Trên tia đối của tia AB lấy điểm B’’ sao cho AB’’ = 2cm
- Trên tia đối của tia AC lấy điểm C’’ sao cho AC’’ = 3cm
- Nối B’’ với C’’ ta được tam giác AB’’C’’ thỏa mãn yêu cầu của đề bài.