K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có:

+ Trong ΔBIC có ∠BIC = 180o - (∠B1 + ∠C1) (1)

+ BI, CI là phân giác của ∠ABC và ∠BCA nên:

∠B1 = 1/2. ∠ABC; ∠C1 = 1/2. ∠ACB

⇒ ∠B1 + ∠C1 = 1/2. (∠ABC + ∠ACB) (2)

⇒ ∠ABC + ∠ACB = 180 - ∠A (3).

Từ (1), (2) và (3) suy ra ∠BIC = 180o - 1/2.(180 - ∠A) = 90o + 1/2.∠A

+) Nếu ∠A = 80o ⇒ ∠BIC = 90º + 1/2.80o = 130o.

+) Nếu ∠A = mo ⇒ ∠BIC = 90o + 1/2.mo.

28 tháng 10 2019

Ta có:góc ABI= góc IBC(BI là tia phân giác của góc ABC)

Góc AIB=IBC=80*÷2=40*

Lại có:ACI=ICB=40*÷2=20*(vì CI là tia phân giác của ACB)

Xét tam giác BIC có:IBC+ICB+BIC=180*(tổng 3 góc của tam giác)

=>BIC=180*-(IBC+ICB)=180*-(40*+20*)=180*-60*=120*

24 tháng 10 2018

A B C K I 1 2 1 2 3 4

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)

\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)

Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)

\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)

Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)

A B C #Hoàng Sơn I 1 2 1 2

Vì tổng 3 góc trong tam giác luôn là 180o

=> \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\) mà \(\widehat{A}=78^o\)

=> \(\widehat{ABC}+\widehat{ACB}=180^o-78^o=102^o\)

Lại có tổng 2 góc B2 và C2 là :

\(\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{102^o}{2}=51^o\)

Vì tổng 3 góc trong tam giác luôn bằng 180o

=> B2 + C2\(\widehat{BIC}\)- 180o 

Mà B2 + C2 = 51o

=> BIC = 180o - 51o = 129o

19 tháng 9 2021

Bạn tự vẽ hình nhé

Ta có : góc BAC = 78

---> ABC + ACB = 180 - 78 = 102

---> 2.CBI + 2.BCI = 102

---> CBI + BCI = 51

---> BIC = 180 - 51 = 129

xin tiick

15 tháng 8 2017

Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)

Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)

Hay A1 + 80 + B = 180 => A1 + B = 100 (1)

Do góc ADB + ADC = 180 (Kề bù)

=> 80+ ADC = 180

ADC = 100

Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)

A2 + 100 + C = 180

A2 + C = 80 (2)

Từ 1, 2, có: A2 + C + 20 = A1 + B = 100

=> A1 + C + 20 = A1 + 3/2C

3/2C - C = 20

=> 1/2C= 20

C= 40

Mà B = 3/2 C => B = 3/2 . 40 = 60

Xét tam giác ABC có: A+B+C = 180

hay A + 60+40=180

A= 80

Vậy ...........

2/ 

15 tháng 8 2017

Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100 

Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C 

Xét tam giác IBC có: 

B2+BIC+C2 = 180 

(B2+C2) + BIC = 180

1/2 B + 1/2 C + BIC = 180

1/2 ( B+C) +BIC = 180

hay 1/2 . 100 + BIC = 180

BIC = 180 - 50

BIC = 130

Vậy ...

Bài 2: 

\(\widehat{ADB}=180^0-80^0=100^0\)

Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)

\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)

\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)

\(\Leftrightarrow\widehat{C}=40^0\)

hay \(\widehat{B}=60^0\)

=>\(\widehat{BAC}=80^0\)

14 tháng 8 2020

B C A I 1 1 2 2 M

a) xét \(\Delta ABC\)

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)

mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C

\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)

\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)

\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)

\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)

XÉT \(\Delta BCI\)

\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)

THAY \(50^o+\widehat{BIC}=180^o\)

\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)

B) TA CÓ

\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)

\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)

mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)