Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{P_nC_n^k}{n!A_n^k}=\frac{n!.\frac{n!}{k!\left(n-k\right)!}}{n!.\frac{n!}{\left(n-k\right)!}}=\frac{1}{k!}\)
Chắc là bạn ghi nhầm đề
a) Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có \(C^4_{50}.C^4_{46}\) cách phân công.
Từ đó ta có đẳng thức cần chứng minh
b) Lập luận tương tự
c) Ta có : \(0!=1;2!=2;4!=1.2.3.4=24\)
Các số hạng \(6!;8!;.....,100!\) đều có tận cùng là chữ số \(0\). Do đó chữ số ở hàng đơn vị của \(S\) là \(1+2+4=7\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ giả thiết \(\Rightarrow n,k\ge2\)
Ta có:
\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác :
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)
Vậy bộ số cần tìm là (n,k,p)=(2,2,5)
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\)
Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z (2)
Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)
\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60 (3)
Vì n\(\ge\)k \(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1
Ta nhận thấy nếu n\(\ge\)4, thì
(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72
Do đó mọi n\(\ge\)4 không thỏa mãn (3)
- Xét lần lượt các khả năng
1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0
Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)
2) Nếu n=1, do 0\(\le\)k\(\le\)n \(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)
Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)
3) Nếu n=2 khi đó:
(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60
\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2
4) Nếu n=3
(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60
\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3
Vậy (1) có các nghiệm (n,k) sau
(0,0), (1,0), (1,1), (2,2), (3,3).
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm