K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GV
29 tháng 4 2017

A B C D E M h N

Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.

Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)

b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.

13 tháng 2 2017

tam giác IEC vuông là hiển nhiên nhé (do IE II AD đó)

còn \(\widehat{ACD}=45\)là do tính chất hình vuông

Vậy nên ICE vuông cân

13 tháng 2 2017

j vậy trời

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng

∠ (ABF) +  ∠ (DFC) =  180 0

⇒ D, F, E thẳng hàng

△ DFC = △ EFB (g.c.g)

S D F C = S E F B

Suy ra: S A B C D = S A D E

△ DFC =  △ EFB⇒ DC = BE

AE = AB + BE = AB + DC

S A D E  = 1/2 DH. AE = 1/2 DH. (AB + CD)

Vậy : S A B C D = 1/2 DH. (AB + CD)

13 tháng 9 2016

Tia AB cắt DC tại E.

=> AC là tia phân giác của \(\widehat{DAE}\left(gt\right)\)

\(\Rightarrow AC\perp DE\left(gt\right)\)

=> Tam giác ADE cân.

Lại có: \(\widehat{D}=60^o\Rightarrow\Delta ADE\) là tam giác đều.

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

Mà: BC//AD => BC là đường trung bình của \(\Delta ADE\)

Ta có: \(AB=DC=\frac{AD}{2},BC=\frac{AD}{2}\)

Giả thiết: \(AB+BC+CD+AD=20\)

\(\Rightarrow\frac{AD}{2}+\frac{AD}{2}+\frac{AD}{2}+AD=20\)

\(\Rightarrow\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)

13 tháng 9 2016

cảm ơn 

26 tháng 12 2017

Bạn tự vẽ hình nha ( hình nó dễ )

Gọi F là trung điểm của BC. Cắt hình thang theo đường DF đưa ghép vềnhư hình vẽ, điểm C trùng với điểm B , điểm D trùng với điểm E 

Vì AB // CD \(\Rightarrow\)\(\widehat{ABC}+180\)độ \(\Leftrightarrow\)A ; B ; E thẳng hàng

\(\widehat{ABF}+\widehat{DFC}=180\)độ

\(\Rightarrow\)D ; F ; E thẳng hàng

\(\Delta DFC=\Delta EFB\left(g-c-g\right)\)

Diện tích DFC = diện tích EFB

\(\Rightarrow\)Diện tích ABCD = diện tích ADE

\(\Delta DFC=\Delta EFB\left(cmt\right)\)

DC = BE

AE = AB + BE = AB + CD 

Diện tích ADE = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

Vậy diện tích ABCD = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)