Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M h N
Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.
Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)
b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.
tam giác IEC vuông là hiển nhiên nhé (do IE II AD đó)
còn \(\widehat{ACD}=45\)là do tính chất hình vuông
Vậy nên ICE vuông cân
Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.
Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng
∠ (ABF) + ∠ (DFC) = 180 0
⇒ D, F, E thẳng hàng
△ DFC = △ EFB (g.c.g)
S D F C = S E F B
Suy ra: S A B C D = S A D E
△ DFC = △ EFB⇒ DC = BE
AE = AB + BE = AB + DC
S A D E = 1/2 DH. AE = 1/2 DH. (AB + CD)
Vậy : S A B C D = 1/2 DH. (AB + CD)
Tia AB cắt DC tại E.
=> AC là tia phân giác của \(\widehat{DAE}\left(gt\right)\)
\(\Rightarrow AC\perp DE\left(gt\right)\)
=> Tam giác ADE cân.
Lại có: \(\widehat{D}=60^o\Rightarrow\Delta ADE\) là tam giác đều.
=> C là trung điểm DE (AC đồng thời la trung tuyến)
Mà: BC//AD => BC là đường trung bình của \(\Delta ADE\)
Ta có: \(AB=DC=\frac{AD}{2},BC=\frac{AD}{2}\)
Giả thiết: \(AB+BC+CD+AD=20\)
\(\Rightarrow\frac{AD}{2}+\frac{AD}{2}+\frac{AD}{2}+AD=20\)
\(\Rightarrow\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)
Bạn tự vẽ hình nha ( hình nó dễ )
Gọi F là trung điểm của BC. Cắt hình thang theo đường DF đưa ghép vềnhư hình vẽ, điểm C trùng với điểm B , điểm D trùng với điểm E
Vì AB // CD \(\Rightarrow\)\(\widehat{ABC}+180\)độ \(\Leftrightarrow\)A ; B ; E thẳng hàng
\(\widehat{ABF}+\widehat{DFC}=180\)độ
\(\Rightarrow\)D ; F ; E thẳng hàng
\(\Delta DFC=\Delta EFB\left(g-c-g\right)\)
Diện tích DFC = diện tích EFB
\(\Rightarrow\)Diện tích ABCD = diện tích ADE
\(\Delta DFC=\Delta EFB\left(cmt\right)\)
DC = BE
AE = AB + BE = AB + CD
Diện tích ADE = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)
Vậy diện tích ABCD = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)
Dựa trên hình vẽ câu a ta chọn điểm K là trung điểm AE.