Cho hình chóp S.ABCD 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

Bạn tham khảo bài này nhé

Câu hỏi của Bảo Sinh - Toán lớp 12 | Học trực tuyến

Câu hỏi của Vũ Trịnh Hoài Nam - Toán lớp 12 | Học trực tuyến

18 tháng 7 2020

Gọi H là hình chiếu của S lên (ABC)

\(\left\{{}\begin{matrix}SA\perp AB\\SH\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAH\right)\Rightarrow AB\perp AH\)

\(\left\{{}\begin{matrix}SC\perp BC\\SH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SCH\right)\Rightarrow BC\perp CH\)

\(SA=\sqrt{SB^2-AB^2}=2a\)

\(\widehat{SBH}=30^0\Rightarrow\left\{{}\begin{matrix}SH=a\sqrt{3}\\BH=3a\end{matrix}\right.\)

\(\widehat{SCH}=60^0\Rightarrow\left\{{}\begin{matrix}CH=a\\SC=2a\end{matrix}\right.\) \(\Rightarrow BC=2\sqrt{2}\)

\(\Rightarrow\Delta ABC\) cân tại B

\(AH=\sqrt{SA^2-SH^2}=a\Rightarrow\Delta AHC\) cân tại H

\(\Rightarrow AC\) vuông góc BH tại M với M là trung điểm AC

Hệ thức lượng: \(AC=2AM=\frac{2.AH.AB}{BH}=\frac{4a\sqrt{2}}{3}\)

\(BM=\sqrt{AB^2-AM^2}=\frac{8a}{3}\)

\(V=\frac{1}{3}SH.\frac{1}{2}BM.AC=\frac{16a^3\sqrt{6}}{27}\)

#meisngoctho

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho . A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\) Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD A....
Đọc tiếp

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho .

A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\)

Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. \(\frac{3a}{2}\) B. \(\frac{a}{2}\) C. a D. \(\frac{3a}{4}\)

Câu 3 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = \(a\sqrt{2}\) , SA = SB = SC . Góc giữa SA và (ABC) bằng 600 . Tính diện tích mặt cầu ngoại tiếp S.ABC

A. \(\frac{16\Pi a^2}{9}\) B. \(\frac{16\Pi a^2}{3}\) C. \(4\Pi a^2\) D. \(\frac{64\Pi a^2}{3}\)

Câu 4 : Cho mặt cầu (S) có bán kính R = \(\sqrt{3}\) . Xét các điểm A ,B , C , D nằm trên mặt cầu (S) sao cho AB , AC , AD đôi một vuông góc với nhau . Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng

A. \(\frac{8}{3}\) B. 8 C. 4 D. \(\frac{4}{3}\)

help me !!!!!!

3
NV
30 tháng 8 2020

4.

Gọi M là trung điểm CD, qua M kẻ đường thẳng song song AB

Gọi N là trung điểm AB, qua N kẻ đường thẳng song song AM

Gọi giao của 2 đường thẳng trên là O \(\Rightarrow\) O là tâm (S)

\(\Rightarrow AO=R=\sqrt{3}\)

Đặt \(AB=x;AC=y;AD=z\)

\(AN=\frac{AB}{2}=\frac{x}{2}\) ; \(AM=\frac{CD}{2}=\frac{1}{2}\sqrt{AC^2+AD^2}=\frac{1}{2}\sqrt{y^2+z^2}\)

Áp dụng Pitago: \(AO^2=AN^2+AM^2\)

\(\Rightarrow\frac{x^2}{4}+\frac{1}{4}\left(y^2+z^2\right)=3\Rightarrow x^2+y^2+z^2=12\)

\(V=\frac{1}{3}xyz\le\frac{1}{3}\left(\frac{x+y+z}{3}\right)^3\le\frac{1}{3}\left(\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\right)^3=\frac{8}{3}\)

NV
30 tháng 8 2020

2.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a}{2}\)

Áp dụng công thức từ câu 1:

\(R=\frac{SA^2}{2SO}=\frac{3a}{4}\)

3.

\(BC=AB\sqrt{2}=2a\)

Gọi H là hình chiếu của S lên (ABC) \(\Rightarrow\) H đồng thời là tâm đường tròn ngoại tiếp đáy

\(\Rightarrow\) H là trung điểm BC

\(\Rightarrow\widehat{SAH}=60^0\Rightarrow SH=AH.tan60^0=\frac{BC}{2}tan60^0=a\sqrt{3}\)

\(SA=\frac{AH}{cos60^0}=2a\)

\(\Rightarrow R=\frac{SA^2}{2SH}=\frac{2\sqrt{3}a}{3}\)

\(S=4\pi R^2=\frac{16\pi a^2}{3}\)

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\) Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\) A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a

A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\)

A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 3 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , BD = 2a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = SC

A. V = 4a3 B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = \(a^3\sqrt{2}\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Tính thể tích V của khối chóp S.ABCD là hình chữ nhật , AB = a , AD = \(a\sqrt{3}\) , \(SA\perp\left(ABC\right)\) và SC tạo với mặt phẳng đáy một góc 600

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = 6a3 D. V = 2a3

1
NV
4 tháng 8 2020

1.

\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)

2.

\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)

P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"

Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu

3.

Câu này đề sai

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A

\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)

Do đó đề cho \(SA=SC\) là vô lý

4.

\(AC=BD=\sqrt{AB^2+AD^2}=2a\)

\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)

\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) . Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\)....
Đọc tiếp

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) .
Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\). \(SA\perp\left(ABCD\right)\)\(SA=a\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SB,SC\). Điểm E nằm trên cạnh \(SA\) sao cho \(SE=2EA\). Gọi điểm \(P\) là điểm di động trên cạnh \(SB\). Giả sử \(d\) là độ dài đoạn \(AP\) mà tại vị trị điểm \(P\) thì \(V_{S.MNEP}\) đạt giá trị nhỏ nhất và giả sử \(d_1\) là độ dài đoạn \(AP\) mà tại vị trí điểm \(P\) thì \(V_{S.MNP}\) đạt giá trị lớn nhất. Tính \(d+d_1\) bằng

a) 3a

b) \(\sqrt{3}a\)

c) 4a

d) Kết quả khác

0
NV
13 tháng 5 2020

Gọi H là hình chiếu của S lên đáy

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABC

\(\Rightarrow\) H là trung điểm AC hay H là tâm đáy

\(AB=\sqrt{AC^2-BC^2}=a\sqrt{3}\)

Do H là hình chiếu S lên đáy \(\Rightarrow BH\) là hình chiếu của SB lên đáy

\(\Rightarrow\widehat{SBH}=60^0\Rightarrow SH=BH.tan60^0=a\sqrt{3}\)

\(V=\frac{1}{3}BH.AB.BC=\frac{1}{3}.a\sqrt{3}.a\sqrt{3}.a=a^3\)

Ko đáp án nào đúng?