K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

26 tháng 4 2016

Ta có : \(y'=3x^2-2\left(m-1\right)x+3m+1\)

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm, ta có : \(x_0=1\Rightarrow y_0=3m+1,y'\left(1\right)=m+6\)

Phương trình tiếp tuyến tại M  : \(y=\left(m+6\right)\left(x-1\right)+3m+1\)

Tiếp tuyến đi qua A \(\Leftrightarrow-1=m+6+3m+1\Leftrightarrow m=-2\)

Vậy m = -2 là giá trị cần tìm

6 tháng 4 2016

\(y=-x^4+2\left(m+1\right)x^2+m+1\left(C_m\right)\)

\(y'=-4x^2+4\left(m+1\right)x=-4x\left(x^2-m-1\right)\)

Xét \(y'=0\Leftrightarrow-4x\left(x^2-m-1\right)=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m+1\left(1\right)\end{cases}\)

Hàm số có 3 điểm cực trị khi và chỉ khi phương trình \(y'=0\) có 3 nghiệm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 0 

\(\Leftrightarrow m+1>0\Leftrightarrow m>-1\) (*)

Với điều kiện (*) phương trình y' = 0 có 3 nghiệm phân biệt \(x,x=\pm\sqrt{m+1}\) và có 3 điểm cực trị của đồ thị \(C_m\) là \(A\left(0;m+1\right);B\left(-\sqrt{m+1;}-\left(m+1\right)^2+m+1;\right);C\left(\sqrt{m+1};-\left(m+1\right)^2+m+1\right)\)

3 điểm cực trị tạo thành 1 tam giác đều :

\(\Leftrightarrow AB=AC=CB\Leftrightarrow AB^2=AC^2=CB^2\) 

\(\Leftrightarrow\begin{cases}AB^2=AC^2\\AB^2=BC^2\end{cases}\)\(\Leftrightarrow\begin{cases}m+1+\left(m+1\right)^4=m+1+\left(m+1\right)^4\\m+1+\left(m+1\right)^4=4\left(m+1\right)\end{cases}\)

                              \(\Leftrightarrow m=\sqrt[3]{3}-1\)

 

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

28 tháng 3 2016

Ta có : \(y'=4x^3+4mx;y'=0\Leftrightarrow4x\left(x^2+m\right)=0\Leftrightarrow\begin{cases}x=0\\x=\pm\sqrt{-m}\end{cases}\) (m<0)

Gọi \(A\left(0;m^2+m\right);B\left(\sqrt{-m;}m\right);C\left(-\sqrt{-m};m\right)\) là các điểm cực trị

\(\overrightarrow{AB}=\left(\sqrt{-m},-m^2\right);\overrightarrow{AC}=\left(-\sqrt{-m},-m\right)\)

Tam giác ABC cân tại A nên góc 120 độ chính là góc A

\(\widehat{A}=120^0\Leftrightarrow\cos A=-\frac{1}{2}\Leftrightarrow\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{-\sqrt{-m}.\sqrt{-m}+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{m+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow2m+2m^4=m-m^4\Leftrightarrow3m^4+m=0\)

                \(\Leftrightarrow\begin{cases}m=0\\m=-\frac{1}{\sqrt{3}}\end{cases}\) mà m=0 thì loại

Vậy \(m=-\frac{1}{\sqrt{3}}\) thỏa mãn bài toán

 

18 tháng 8 2020

Tại sao vectơ AC (- căn-m,-m)

27 tháng 3 2016

\(y'=2x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại, cực tiểu

\(\Delta'=9\left(m+1\right)^2=3.9>0\)

     \(=\left(m+1\right)^2-3>0\)

\(\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có : \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

Gọi tọa độ điểm cực đại và cực tiểu là \(\left(x_1;y_1\right)\) và  \(\left(x_2;y_2\right)\)

=> \(y_1=-2\left(m^2+2m-2\right)x_1+4m+1\)

   \(y_2=-2\left(m^2+2m-2\right)x_2+4m+1\)

Vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng \(y=\frac{1}{2}x\) ta có điều kiện cần là :

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\)

\(\Leftrightarrow m^2+2m-2=1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Theo định lí Viet ta có \(\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=3\end{cases}\)

Khi m =1 => phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2x+5\)

Tọa độ trung điểm cực đại và cực tiểu là :

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiểu là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\Rightarrow m=1\) thỏa mãn

Khi m=-3 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x-11

(làm tương tự cách như trên)

 
23 tháng 4 2016

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow y'=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3-2\left(3m+1\right)x=0\) có 3 nghiệm phân biệt \(\Leftrightarrow m>-\frac{1}{3}\) (1)

Khi đó 3 điểm cực trị của đồ thị  là \(A\left(0;2m+2\right);B\left(-\sqrt{6m+2};-9m^2-4m+1\right);C\left(\sqrt{6m+2};-9m^2-4m+1\right)\)

Rõ ràng tam giác ABC cân tại A và trung tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm của tam giác ABC \(\Leftrightarrow y_A+2y_B=0\)

Hay \(2m+2+2\left(-9m^2-4m+1\right)=0\Leftrightarrow9m^2+3m-2=0\)

Suy ra \(m=-\frac{2}{3}\) hoặc \(m=\frac{1}{3}\)

Kết hợp với (1) suy ra giá trị của m là \(m=\frac{1}{3}\)

22 tháng 4 2016

Ta có \(y'=4x^3-4mx=4x\left(x^2-m\right);y'=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số có 3 điểm cực trị \(\Leftrightarrow\) phương trình \(y'=0\) có 3 nghiệm phân biệt là \(x=0;x=\pm\sqrt{m}\) suy ra đồ thị của hàm số có 3 điểm cực trị là \(A\left(0;m^2-m\right);B\left(-\sqrt{m};-m\right);\overrightarrow{AB}=\left(-\sqrt{m};-m^2\right);\overrightarrow{AC}=\left(\sqrt{m;}-m^2\right)\)

Do đó \(AB=AC=\sqrt{m^4+m}\) nên yêu cầu bài toán được thỏa mãn 

\(\Leftrightarrow\widehat{BAC}=120^0\Leftrightarrow\left(\overrightarrow{AB};\overrightarrow{AC}\right)=120^0\)\(\Leftrightarrow\frac{\overrightarrow{AB}\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|}=\frac{1}{2}\)

                           \(\Leftrightarrow\frac{-\left(m\right)+m^4}{m+m^4}=-\frac{1}{2}\Leftrightarrow2m^4-2m=-m-m^4\)

                          \(\Leftrightarrow3m^4-m=0\Leftrightarrow m\left(3m^3-1\right)=0\Leftrightarrow m=0\) hoặc \(m=\frac{1}{\sqrt[3]{3}}\)

Kết hợp với điều kiện (*) ta có giá trị cần tìm là \(m=\frac{1}{\sqrt[3]{3}}\)