Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\) và \(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\) và \(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).
a) \(pt\Leftrightarrow cosx=\frac{m+1}{2}\)
Để pt có nghiêm \(\Rightarrow-1\le\frac{m+1}{2}\le1\Rightarrow-3\le m\le1\)
b)
pi/2 -pi/2 0
\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow0\le cosx\le1\\ \Rightarrow0\le\frac{m+1}{2}\le1\Rightarrow-1\le m\le1\)
a) () // (ABCD) => // AB => là trung điểm của SB. Chứng minh tương tự với các điểm còn lại
b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).
c) Có hai hình chóp cụt:
Đáp án B.
Trên hai đường tròn ( C 1 ) , ( C 2 ) lần lượt lấy M, N sao cho hai điểm này không trùng hai điểm A, B. Khi đó 4 điểm M, N, A, B không đồng phẳng nên tạo thành tứ diện ABMN. Mặt cầu ( S ) đi qua ( C 1 ) , ( C 2 ) khi đó mặt (S) đi qua A, B, M, N
Do đó có duy nhất 1 mặt cầu