K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).

9 tháng 4 2017

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

9 tháng 4 2017

a, Phương trình chính tắc của (E) có dạng

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a

Ta có A(0;2) \(\in\left(E\right)\)<=>b=2

(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)

Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3

==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)

c, S=4ab=24

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

25 tháng 4 2019

bạn có thể trình bày chi tiết bài làm giúp mình không ?

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

12 tháng 4 2016

Chia 2 vế của phương trình cho 36 ta được :

=>  +  = 1

Từ đây suy ra: 2a = 6.     2b = 4,    c = √5

=>  F1(-√5 ; 0) và F2(√5 ; 0)

 A1(-3; 0), A2(3; 0),  B1(0; -2),  B2(0; 2).