Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 - 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
b)
4x2 + 9y2 = 1 <=> + = 1
a2= => a = => độ dài trục lớn 2a = 1
b2 = => b = => độ dài trục nhỏ 2b =
c2 = a2 – b2
= - = => c =
F1(- ; 0) và F2( ; 0)
A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).
c) Chia 2 vế của phương trình cho 36 ta được :
=> + = 1
Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)
=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).
Phương trình đường ELIP có dạng (E) :
(E) đi qua M(0; 3), nên :
=>b= 3.
(E) đi qua N(3; -12/5), nên :
=> a = 5.
Phương trình đường ELIP có dạng (E) :
có tiệu điểm F(; 0) => c = => a2 – b2 = 3 (1)
(E) đi qua M(1 ; ), nên : (2)
Từ (1) và (2) , ta được :
a2 = 4 ; b2 = 1
vậy : (E) :
a, Phương trình chính tắc của (E) có dạng
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a
Ta có A(0;2) \(\in\left(E\right)\)<=>b=2
(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)
Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3
==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)
c, S=4ab=24
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
Chia 2 vế của phương trình cho 36 ta được :
=> + = 1
Từ đây suy ra: 2a = 6. 2b = 4, c = √5
=> F1(-√5 ; 0) và F2(√5 ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).
Đáp án: D