K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OH ⊥ AB, OK ⊥ CD

Ta có: AB = CD (gt)

Suy ra : OH = OK (hai dây bằng nhau cách đều tâm)

Vậy OI là tia phân giác của góc BID (tính chất đường phân giác)

24 tháng 6 2017

Liên hệ giữa dây và khoảng cách từ tâm tới dây

25 tháng 7 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét hai tam giác OIH và OIK, ta có :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OI chung

OH = OK (chứng minh trên)

Suy ra: ∆ OIH =  ∆ OIK (cạnh huyền, cạnh góc vuông)

Suy ra: IH = IK     (1)

Lại có: HA = HB = (1/2).AB

KC = KD = (1/2).CD

Mà AB = CD nên HA = KC     (2)

Từ (1) và (2) suy ra: IA = IC

Mà AB = CD nên IB = ID

10 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HB (gt)

Suy ra : OH ⊥ AB (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : OK ⊥ CD (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

O M 2 = O H 2 + H M 2

Suy ra :  H M 2 = O M 2 - O H 2  (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

O M 2 = O K 2 + K M 2

Suy ra:  K M 2 = O M 2 - O K 2  (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: H M 2 > K M 2  hay HM > KM

22 tháng 2 2021

có sđ AB = sđ BC = sđ CD 

mà BIC = 1/2 ( sđ AD - sđ BC ) =1/2 ( sđ BD - sđ AB -sđ BC )

BKD = 1/2 ( sđ BD - sđ BC-sđ CD )

nên BIC=BKD

b,KBC = CDB ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung CD)

mà CDB = CBD ( BC = CD )

nên KBC = CBD => BC là tia pg của KBD

23 tháng 2 2021

A) 

Vì góc BIC có đỉnh nằm ngoài đường tròn
nên: góc BIC = \(\dfrac{sđAD-sđBC}{2}\) 
Mà: sđAD = \(\dfrac{sđBD+sđAB}{2}\) ; sđBC = sđ AB = sđCD
=> góc BIC = \(\dfrac{sđBD+sđAB-sđAB}{2}\) = \(\dfrac{sđBD}{2}\) (1)
Ta có: góc BKD = \(\dfrac{sđBD}{2}\) (2)
từ (1) và (2) => góc BIC = góc BKD

B)

Vì góc KBC và góc BDC cùng chắn cung BC 
=> góc KBC = góc BDC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
Ta có: sđBC = sđCD (gt)
nên: góc BDC = góc DBC (hai góc nội tiếp chắn hai cung bằng nhau)
Vậy góc KBC = góc DBC (cùng bằng góc BDC)
hay: BC là tia phân giác của góc DBK