Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M’ đối xứng với M qua (α)
⇒ H là trung điểm MM’
⇒ M’(-3; 0; -2).
Phương trình tham số của đường thẳng ∆ đi qua điểm M(1; -1; 2) và vuông góc với mặt phẳng ( α ): 2x – y + 2z + 12 = 0 là:
Δ
Xét điểm H(1 + 2t; -1 – t; 2 + 2t) ∈ ∆
Ta có H ∈ ( α ) ⇔ 2(1 + 2t) + (1 + t) + 2(2 + 2t) + 12 = 0 ⇔ t = −19/9
Vậy ta được
Gọi H là hình chiếu vuông góc của M lên mp (α), ta có MH ⊥ mp (α)
Đường thẳng MH có vecto chỉ phương là n → =(1;3;-1)
x = 2 + t y = 1 + 3 t z = - t
thay x,y,z trong pt tham số của đường thẳng MH vào pt của mp (α), ta có:
Vì M' đối xứng với M qua mp (α) nên H là trung điểm của MM'
Đáp án C
Phương trình mặt phẳng qua M và song song với ( α ) là:
3(x-3)-(y+1)+2(z+2)=0 ⇔ 3x-y+2z-6=0
H là trung điểm của MM’, suy ra x M ' = 2 x H - x M = −67/9
y M ' = 2 y H - y M = 29/9
z M ' = 2 z H - z M = −58/9
Vậy ta được