K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

\(\dfrac{3x}{x+3}=\dfrac{3x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x^2-9x}{x^2-9}\)

\(\dfrac{x-1}{x-3}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2x-3}{x^2-9}\)

\(x^2+9=\dfrac{\left(x^2+9\right)\left(x^2-9\right)}{x^2-9}=\dfrac{x^4-81}{x^2-9}\)

11 tháng 11 2017

Bài 6:(Sbt/25) Dùng tính chất cơ bản của phân thức để biến đổi mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng tử thức :

a) \(\dfrac{3}{x+2}\)\(\dfrac{x-1}{5x}\)

Ta có:

\(\dfrac{3}{x+2}\) = \(\dfrac{3.\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}\) = \(\dfrac{3x-3}{x^2+x-2}\)

\(\dfrac{x-1}{5x}\) = \(\dfrac{\left(x-1\right).3}{5x.3}\) =\(\dfrac{3x-3}{15x}\)

Vậy .....

b. \(\dfrac{x+5}{4x}\)\(\dfrac{x^2-25}{2x+3}\)

Ta có:

\(\dfrac{x+5}{4x}\) = \(\dfrac{\left(x+5\right)\left(x-5\right)}{4x.\left(x-5\right)}\) = \(\dfrac{x^2-25}{4x^2-20x}\)

\(\dfrac{x^2-25}{2x+3}\)

Vậy .....

11 tháng 11 2017

Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. \(\dfrac{3x}{x-5}\)\(\dfrac{7x+2}{5-x}\)

Ta có:

\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)

\(\dfrac{7x+2}{5-x}\)

Vậy .....

b.\(\dfrac{4x}{x+1}\)\(\dfrac{3x}{x-1}\)

Ta có:

\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)

\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)

Vậy ..........

c. \(\dfrac{2}{x^2+8x+16}\)\(\dfrac{x-4}{2x+8}\)

Ta có:

\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)

\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)

Vậy .........

d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

Ta có:

\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

Vậy .........

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

28 tháng 6 2017

Tính chất cơ bản của phân thức

18 tháng 11 2018

Tìm MTC: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

Nên \(MTC=\left(x-1\right)\left(x^2+x+1\right)\)

Nhân tử phụ: 

\(\left(x^3-1\right)\div\left(x^3-1\right)=1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div\left(x^2+x+1\right)=x-1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div1=\left(x-1\right)\left(x^2+x+1\right)\)

Quy đồng:

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{1-2x}{x^2+x+1}=\frac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(-2=\frac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)