Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
\(=\left(x+y\right)^2:\left(x+y\right)\)
\(=x+y\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
\(=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)\)
\(=25x^2-5x+1\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
\(=\left(x-y\right)^2:\left(y-x\right)\)
\(=\left(y-x\right)^2:\left(y-x\right)\)
\(=y-x\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x-2y\right)^3\)
Tại \(x=4;\)\(y=6\) thì gtbt là:
\(\left(3.4-2.6\right)^3=0\)
a/ \(\left(m+n\right)\left(m^3-mn+n^2\right)=m^3+n^3\)
b/ \(\left(a-b-c\right)^2-\left(a-b+c\right)^2=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)=-2c\left(2a-2b\right)=-4c\left(a-b\right)\)c/
\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)=\left(\left(1+x+x^2\right)\left(1-x\right)\right)\left(\left(1-x+x^2\right)\left(1+x\right)\right)=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
a) m3+n3
b) (a -b-c+a-b+c)(a-b-c-a+b-c)
= -4c(a-b)
c) (1-x3)(1+x3)
=1-x6
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
\(\left(x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x-1\right)-\left(x^2-2^2\right)\)
\(=\left(x-1\right)-x^2+2^2\)
\(=x-1-x^2+2^2\)
\(=x-x^2+\left(2-1\right)\left(2+1\right)\)
\(=x-x^2+3\)
a/ (x-1)2-(x-2)(x+2)
=(x-1)-(x2-22)
=(x-1)-x2-22
=x-x2 +(2-1)(2+1)
=x-x2+3
\(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
ai k mk mk k lại
Giải:
a) \(\left(2x+y+3\right)^2\)
\(=\left(2x+y\right)^2+2.3\left(2x+y\right)+3^2\)
\(=\left(2x\right)^2+2.2x.y+y^2+2.3\left(2x+y\right)+3^2\)
\(=4x^2+4xy+y^2+12x+6y+9\)
Vậy ...
b) \(\left(x-2y+1\right)^2\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1^2\)
\(=x^2-2.x.2y+\left(2y\right)^2+2x-4y+1^2\)
\(=x^2-4xy+4y^2+2x-4y+1\)
Vậy ...
c) \(\left(x^2-2xy^2-3\right)^2\)
\(=\left(x^2-2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=\left(x^2\right)^2-2.x^2.2xy^2+\left(2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=x^4-4x^3y^2+4x^2y^4+6x^2-12xy^2-9\)
Vậy ...
\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)
\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)
(x2 – 2xy + y2) : (y – x)
= (x – y)2 : [-(x – y)]
= -(x – y)
= y – x
Hoặc (x2 – 2xy + y2) : (y – x)
= (y2 – 2yx + x2) : (y – x)
= (y – x)2 : (y – x)
= y – x