K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

) Những cạnh song song với cạnh CC1 là: AA1, BB1, DD1

b) Những cạnh song song với cạnh A1D1 là: B1C1, BC, AD

22 tháng 4 2017
Những cạnh song song với cạnh CC1 là : AA1; BB1; DD1
Những cạnh song song với cạnh A1D1 là B1C1; BC; AD

 

a. Ta có: A1B1 // mp(ABCD)

A1B1 // mp(CDD1C1)

b. Ta có: AC // A1C1

Suy ra: AC không thuộc mp(A1B1C1)

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng1/ Trong các hình sau, hình không có tâm đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi2/ Trong các hình sau, hình không có trục đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ...
Đọc tiếp

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I

 

I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng

1/ Trong các hình sau, hình không có tâm đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

2/ Trong các hình sau, hình không có trục đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ dài đường trung bình của hình thang đó là:

A . 10cm B . 5cm C . √10 cm D . √5cm

4/ Tứ giác có hai cạnh đối song song và hai đường chéo bằng nhau là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình chữ nhật

5/ Một hình thang có một cặp góc đối là: 1250 và 650. Cặp góc đối còn lại của hình thang đó là:

A . 1050 ; 450 B . 1050 ; 650

C . 1150 ; 550 D . 1150 ; 650

6/ Cho tứ giác ABCD, có ∠A = 800; ∠B =1200, ∠D = 500. Số đo góc C là?

A. 1000 , B. 1500, C. 1100, D. 1150

7/ Góc kề 1 cạnh bên hình thang có số đo 750, góc kề còn lại của cạnh bên đó là:

A. 850 B. 950 C. 1050 D. 1150

8/ Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là:

A 7cm, B. 8cm, C. 9cm, D. 10 cm

II/TỰ LUẬN (8đ)

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.

Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.

a) Tứ giác AEGF là hình gì ?

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

1

Bài 1: 

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

DO đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC
Do đó: EF là đường trung bình

=>EF//BC

hay BEFC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEFC là hình thang cân

6 tháng 11 2017

A B C D O K a)Xét tứ giác OBKC, ta có:

OC//BK(BK//AC)

BO//KC(KC//BD)

=>tứ giác OBKC là hình bình hành

lại có:

AC \(\perp\) BD ( hai đường chéo)

BD//KC

=> \(\)góc OCK =90o

=> hình bình hành OBKC là hình chữ nhật

b)Ta có:

BC = OK ( do OCKD là hình chữ nhật)

AB=BC( cách cạnh hình thoi bằng nhau)

=> AB = OK

c)

* nếu tứ giác ABCD là hình vuông:

=>BD=AC

mà: BO=1/2BD

OC=1/2AC

=> BO = OC

=> hình chữ nhật OBKC là hình vuông.

Vậy HCN OBKC là hình vuông khi hình thoi ABCD là hình vuông

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
 
 
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     
    nhuquynhdat, 17 Tháng mười hai 2013
    #2
     
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

10 tháng 6 2017

a)Ta có E là trung điểm của CM (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) EF là đường trung bình của (định nghĩa đường trung bình của tam giác)
\(\Rightarrow\) EF//MB (tính chất đường trung bình của tam giác)
hay EF//AB
lại có K là trung điểm của AD (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) KF là đường trung bình của (...)
\(\Rightarrow\) KF//AM (t/c ...)
hay KF//AB
nên EF//KF (vì cùng // với AB)
\(\Rightarrow\) tứ giác EFFIK là hình thang (Định nghĩa hình thang)

Gọi N là trung điểm của AM, nối KM
Ta có N là trung điểm của AM (cách dựng)
K là trung điểm của AD (gt)
\(\Rightarrow\) NK là đường trung bình của
nên NK//DM (t/c....)
mà EN là đường trung bình của (E,I là trung điểm của MC,AM)
\(\Rightarrow\) EI//AC (t/c...)
lại có là những tam giác đều (gt)
\(\Rightarrow\)
\(\Rightarrow\) AC//DM
tức là NK//EN (cùng //AC//DM)
do đó 3 điểm E,K,N thẳng hàng (theo tiên đề Ơ-clit)
(2góc đồng vị của AC//EN)
(2 góc đồng vị của KF//AM)
nên
C/m tương tự, lấy P là trung điểm của BM ta cũng được
Hình thang EFIK có
Vậy EFIK là hình thang cân (dấu hiệu nhận biết)

b) Ta có EFIK là hình thang cân (kq câu a)
\Rightarrow EI=KF (tính chất 2 đường chéo trong hình thang cân)
E là trung điểm của CM, I là trung điểm của DM (gt)
\(\Rightarrow\) EI là đường trung bình của tam giác CMD
\(\Rightarrow\) EI=
Vậy KF=

Phần 1 : Trắc nghiệm : ( 3 điểm ) Câu 1: Chọn câu đúng trong các khẳng định sau.a) ( a - b )3 = ( b – a )3 b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21 c) Kết quả của phép chia (-x)6 : x3 là x3 d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1 Câu 2: Chọn đáp án đúng ; Hình vuông là : a) Tứ giác có 4 cạnh...
Đọc tiếp

Phần 1 : Trắc nghiệm : ( 3 điểm )

Câu 1: Chọn câu đúng trong các khẳng định sau.

a) ( a - b )3 = ( b – a )3

b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21

c) Kết quả của phép chia (-x)6 : x3 là x3

d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1

Câu 2: Chọn đáp án đúng ;

Hình vuông là :

a) Tứ giác có 4 cạnh bằng nhau.

b) Tứ giác có 4 góc bằng nhau.

c) Hình chữ nhật có 2 đường chéo bằng nhau

d) Hình chữ nhật có 2 cạnh bằng nhau.

e) Hình thoi có một góc vuông.

f) Tứ giác có 2 đường chéo vuông góc với nhau và bằng nhau.

Phần 2: Tự luận : ( 7 điểm )

Câu 1: Phân tích đa thức thành nhân tử : ( 2 điểm )

a) 2008a2 – 2008b2

b) x2 – 8x + 15

Câu 2: Cho M = ( x + 3)( x – 3) – ( x + 2)2 – 2( x2 – 4,5 ) ( 2 điểm )

a) Rút gọn biểu thức M

b) Tìm x để M = 0

Câu 3 : ( 3 điểm )

Cho DABC ; M nằm giữa BC. Từ M kẻ đường thẳng song song với AB và AC thứ tự cắt AC và AB tại D và E.

a) Tứ giác AEMD là hình gì ? Vì sao ?

b) Tìm điều kiện của M để tứ giác AEMD là hình thoi ( vẽ hình minh họa ).

c) Tìm điều kiện của DABC để tứ giác AEMD là hình chữ nhật .

 

2
30 tháng 10 2016

Phần I

Câu 1: c,d

Câu 2: e

Phần II

Câu 1:

a, 2008a2-2008b2=2008(a2-b2)=2008(a-b)(a+b)

b, x2-8x+15=x2-3x-5x-+15=x(x-3)-5(x-3)=(x-5)(x-3)

Câu 2:

a, M= (x-3)(x+3)-(x+2)2-2(x2-4,5)

M= x2-9-(x2+4x+4)-2x2+9

M= x2-9-x2-4x-4-2x2+9

M= -2x2-4x-4

M= -2(x2+2x+2)b, Để M=0 -> -2(x2+2x+2)=0->x2+2x+2=0

30 tháng 10 2016

Phần 1:

Câu 1: D

Câu 2: E

Phần 2:

Câu 1:

\(A=2008a^2-2008b^2\)

\(=2008\left(a^2-b^2\right)\)

\(=2008\left(a-b\right)\left(a+b\right)\)

\(B=x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

Câu 2:

\(M=\left(x-3\right)\left(x+3\right)-\left(x+2\right)^2-2\left(x^2-4,5\right)\)

\(=x^2-9-x^2-4x-4-2x^2+9\)

\(=-2x^2-4x-4\)

\(=-2\left(x^2+2x+2\right)\)

\(=-2\left[\left(x^2+2x+1\right)+1\right]\)

\(=-2\left[\left(x+1\right)^2+1\right]\)

\(=-2-2\left(x+1\right)^2\le-2< 0\)

Vậy không có giá trị nào của x thoả mãn yêu cầu.