Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
\(a,4\frac{5}{9}:\frac{\left(-5\right)}{7}+\frac{4}{9}:\frac{-5}{7}\)
\(=\frac{41}{9}.\frac{-7}{5}+\frac{4}{9}.\frac{-7}{5}\)
\(=\frac{-7}{5}.\left(\frac{41}{9}+\frac{4}{9}\right)\)
\(=-\frac{7}{9}.5\)
\(=-7\)
a)Bn Kaito Kid làm rùi!
B)Không viết lại đề
\(=\frac{11}{7}\cdot\left(-\frac{3}{5}+\frac{4}{9}-\frac{2}{5}+\frac{5}{9}\right)=\frac{11}{7}\cdot0=0\)
c)Không viết lại đề
\(A=\left(2+4+...+100\right)\left(\frac{3}{5}\cdot\frac{10}{7}-\frac{6}{7}\right):\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(2+4+6+...+100\right)\cdot0\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=0\)
\(=\frac{7}{6}\cdot\left(\frac{3}{26}-\frac{3}{13}+\frac{1}{10}-\frac{8}{5}\right)=\frac{7}{6}\left(\frac{-3}{26}+\frac{-17}{10}\right)=\frac{7}{6}\cdot\frac{236}{130}=\frac{413}{195}\)
D)
Chứng minh rằng: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Có: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\)
\(\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}=\frac{9^{2008}}{11^{2008}\times\left(10^2\right)^{2008}}=\frac{9^{2008}}{11^{2008}\times100^{2008}}=\frac{9^{2008}}{\left(11\times100\right)^{2008}}=\frac{9^{2008}}{1100^{2008}}=\left(\frac{9}{1100}\right)^{2008}\)
Vì: \(\left(\frac{9}{1100}\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\Rightarrow\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)
\(a,25^3:5^2\)
=\(\left(5^2\right)^3:5^2\)
=\(5^6:5^2\)
=\(5^4\)
\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)
\(=\left(\frac{3}{7}\right)^9\)
\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
=\(3-1+\frac{1}{4}:2\)
\(=2+\frac{1}{4}\cdot\frac{1}{2}\)
\(=2+\frac{1}{8}\)
\(=\frac{17}{8}\)
\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)
\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)
\(=-\frac{14}{5}\cdot\frac{11}{16}\)
\(=-\frac{77}{40}\)
\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)
\(=\frac{2}{3}-\frac{1}{5}\)
\(=\frac{7}{15}\)
\(=\frac{11}{-5}\cdot\frac{-9}{11}\cdot\frac{15}{-14}\cdot\frac{2}{5}+-\frac{2}{77}\cdot\frac{5}{-3}\)
\(=\frac{9}{5}\cdot-\frac{15}{14}\cdot\frac{2}{5}+\frac{10}{231}\)
\(=-\frac{841}{1155}\)
Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)
Mà \(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)
Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)