K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

4 tháng 9 2020

a) \(\frac{8}{9}=1-\frac{1}{9}\)  

\(\frac{108}{109}=1-\frac{1}{109}\)  

Vì \(\frac{1}{9}>\frac{1}{109}\)  

Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)   

Vậy \(\frac{8}{9}< \frac{108}{109}\)  

b) 

\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)  

\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\) 

\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

a. $\frac{-10}{-11}=\frac{10}{11}>0 >\frac{5}{-8}$

b. 

$\frac{99}{100}< 1< \frac{95}{94}$

7 tháng 5 2020

1. a) Để \(A=\frac{3n+5}{n+1}\)là phân số thì \(n+1\ne0\Leftrightarrow n\ne-1\)

Vậy ...

b) Để A là ps thì \(3n+5⋮n+1\)

Ta có: \(3n+5=3\left(n+1\right)+2\)

Vì \(3\left(n+1\right)⋮n+1\)nên để \(3n+5⋮n+1\)thì \(2⋮n+1\Leftrightarrow n+1\varepsilonƯ\left(2\right)\)

Bạn tự tìm n nha rồi kết luận

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

3 tháng 3 2018

 2 hoặc 42

3 tháng 3 2018

Giải như mà mình không chắc nha:

a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)

Ta có:

  \(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)

\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)

Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......

b) Bạn giải tương tự nha! Lười lắm :v

21 tháng 4 2017

+1 với +5 bên A bằng với bên B nên ta chỉ so sánh 126^99/12^100 bên A và 12^100/12^101 bên B

Vì 12^99[A]<12^100[B] và 12^100[A]<12^101[B] 

=>A<B