K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

Đáp án C

Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi. Một khối đa diện là đa diện lồi khi và chỉ khi miền trong của nó luôn nằm về một phía đối với mỗi mặt phẳng đi qua một mặt của nó.

4 tháng 2 2016

\(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow\frac{x-4}{4}=\frac{y-3}{3}\)

Áp dụng TC của DTSBN ta có:

\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-y+3}{4-3}=\frac{5-1}{1}=4\)

Suy ra: (x-4)/4=4 =>x-4=16=>x=20

(y-3)/3=4=>y-3=12=>x=15

5 tháng 2 2016

x-4/y-3=4/3

=>3.(x-4)=4.(y-3)

=>3x-12=4y-12

=>3x=4y

Mà x-y=5=>x=y+5

=>3.(y+5)=4y

=>3y+15=4y=>4y-3y=15=>y=15

 Khi đó x=15+5=20

 Vậy x=20;y=15

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )Câu 1:(5đ)1. Cho \(a,b,c\) là số thực thỏa mãn:\(ab+bc+ca=2015\). Tính giá trị biểu thức:\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)2. Cho \(a,b,c\) là các số nguyên thỏa mãn:\(a^3+b^3=5c^3\)CMR: \(a+b+c\) chia hết cho \(6\)3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa...
Đọc tiếp

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )

Câu 1:()

1. Cho \(a,b,c\) là số thực thỏa mãn:

\(ab+bc+ca=2015\). Tính giá trị biểu thức:

\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)

2. Cho \(a,b,c\) là các số nguyên thỏa mãn:

\(a^3+b^3=5c^3\)

CMR: \(a+b+c\) chia hết cho \(6\)

3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa mãn:

\(x^2\left(y^2+1\right)+y^2+24=12xy\)

Câu 2:()

a) \(3x+\sqrt{5-x}=2\sqrt{x-3}+11\)

b) \(2x^2+4x-8=\left(2x+3\right)\sqrt{x^2-3}\)

Câu 3:()

Cho các số thực \(x,y\) thỏa mãn điều kiện:

\(x-\sqrt{x+1}=\sqrt{y+5}-y\)

Tìm GTLN của \(P=x+y\)

Câu 4:()

Qua \(M\) cố định ở ngoài đường tròn \(\left(O;R\right)\). Qua \(M\) kẻ các tiếp tuyến \(MA,MB\) ( \(A,B\) là các tiếp tuyến ). Qua \(P\) di động trên cung nhỏ \(AB\) ( \(P\) khác \(A;B\) ) dựng tiếp tuyến của \(\left(O\right)\) cắt \(MA,MB\) lần lượt tại \(E\) và \(F\).

a) CMR: Chu vi tam giác \(MEF\) không đổi khi \(P\) di động trên \(AB\).

b) Lấy \(N\) trên tiếp tuyến \(MA\) sao cho \(N,F\) khác phía \(AB\) và \(AN=BF\)CMR\(AB\) đi qua trung điểm của \(NF\).

c) Kẻ đường thẳng \(d\) qua \(M\) của \(\left(O\right)\) tại \(H\) và \(K\). Xác định vị trí của \(d\) để \(MH+HK\) đạt GTNN

Câu 5:()

1. Cho \(p\)là số nguyên tố thỏa mãn \(p^2+2018\) là số nguyên tố. CMR: \(6p^2+2015\) là số nguyên tố.

2. Cho tập \(x=\left\{1;2;3...;2015\right\}\). Tô màu các phần tử \(x\)bởi \(5\) màu: xanh, đỏ, vàng, tím, nâu. CMR tồn tại \(3\) phần tử \(a,b,c\) của \(x\)sao cho \(a\) là bội của \(b\)\(b\)là bội của \(c\)

 

 

5
29 tháng 11 2015

Lớp 9 hả bạn

Thanh nhiều nha

29 tháng 11 2015

Bạn còn đề nào không? Cho mình với

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

21 tháng 8 2017

a

29 tháng 10 2017

sai rồi B

27 tháng 2 2016

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 
và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

4 tháng 2 2016

Hỏi đáp Toán