K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

\(Pt\Leftrightarrow\orbr{\begin{cases}\frac{x}{2}+\frac{\pi}{5}=arcsin\left(\frac{-\sqrt{2}}{3}\right)+k2\pi\\\frac{x}{2}+\frac{\pi}{5}=\pi-arcsin\left(\frac{-\sqrt{2}}{3}\right)+k2\pi\end{cases}}\left(k\in Z\right)\Leftrightarrow....\)

NV
23 tháng 9 2020

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)

b.

\(\sqrt{2}sin\left(\frac{\pi}{4}-2x\right)+\sqrt{2}sin\left(\frac{\pi}{4}+x\right)=1\)

\(\Leftrightarrow cos2x-sin2x+sinx+cosx=1\)

\(\Leftrightarrow1-2sin^2x-2sinx.cosx+sinx+cosx=1\)

\(\Leftrightarrow-2sinx\left(sinx+cosx\right)+sinx+cosx=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)

6 tháng 9 2019

câu d) là \(-\frac{3\pi}{2}< x< \frac{3\pi}{2}\) mình vã quá nên ghi nhầm nha mọi người

NV
19 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow sinx=sin\left(\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cosx=cos\left(\frac{\pi}{4}\right)\)

\(\Leftrightarrow x=\pm\frac{\pi}{4}+k2\pi\)

d.

\(\Leftrightarrow cosx=cos\left(\frac{3\pi}{4}\right)\)

\(\Leftrightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow sinx=sin\left(-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

20 tháng 9 2020

cho mk hỏi câu c có thể gộp 2 họp nghiệm lại được ko v

1 tháng 10 2021

grhbdg

3 tháng 10 2021

32434123421314253646547634764537547352745467524673254-2434217364726465265326546324564527465R632+5483675763547326765476347625374573256732547653274523654763254732654:41625462514651352412436521544E6532655E51263425164652143426543654253421534252344352345

5 tháng 6 2016

2(sin2xcos\(\frac{9\pi}{4}\) + sin\(\frac{9\pi}{4}\)cosx) + 7\(\sqrt{2}\)sinx + \(\sqrt{2}\)( sinx cos\(\frac{11\pi}{2}\)+sin\(\frac{11\pi}{2}\)cosx ) =4\(\sqrt{2}\)

\(\sqrt{2}\)sin2x + \(\sqrt{2}\)cosx +7\(\sqrt{2}\)sinx -\(\sqrt{2}\)cosx =4\(\sqrt{2}\)

2\(\sqrt{2}\)sinxcosx+7\(\sqrt{2}\)sinx - 4\(\sqrt{2}\) =0

PHẦN CÒN LẠI C TỰ LM NỐT NHÉ

NV
16 tháng 7 2020

c/

\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
16 tháng 7 2020

a/

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)

b/

\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

16 tháng 7 2020

\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)

NV
16 tháng 7 2020

d/

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)

Xét (2)

\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)

\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}\left(cos^4\frac{x}{2}-sin^4\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sinx\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin2x=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sin2x=\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

3.

ĐKXĐ: ...

\(\frac{1}{cosx}+\frac{1}{2sinx.cosx}=\frac{1}{2sinx.cosx.cos2x}\)

\(\Leftrightarrow2sinx.cos2x+cos2x=1\)

\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)

\(\Leftrightarrow2sinx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow cos2x-sinx=0\)

\(\Leftrightarrow1-2sin^2x-sinx=0\)

\(\Leftrightarrow2sin^2x+sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)