Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
đặt tử =A,ta có:
tử=2A=2(1+2.2+2.22+...+2.22008)
=2.1+2.2+2.22+...+2.22008
=2+22+23+...+22009
2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)
A=22009-1
thay A vào tử của S ta được:\(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)
Tính tổng S=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều:3
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Cho A = 1 + 2 + 22 + 23 + ... + 22008
-> 2A = 2 + 22 + 23 + 24 +...+ 22009
-> 2A - A = ( 2 + 22 + 23 + 24 +...+ 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )
-> A = \(2^{2009}-1=-\left(1-2^{2009}\right)\)
S = \(\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)=-1
Coi: \(C=1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}\)
\(\Rightarrow C=2C-C=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)=2-2^{2008}\)
\(\Rightarrow S=\frac{2-2^{2008}}{1-2^{2009}}\)
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$