K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)

=>S>1/40*10+1/50*10+1/60*10=3/5

 

S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)

=>S<1/30*10+1/40*10+1/50*10=4/5

=>3/5<S<4/5

7 tháng 3 2017

Ta có:

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Nhận xét:

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{6}\)

\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{3}{5}\)

\(\Rightarrow S>\frac{3}{5}\left(1\right)\)

Lại có:

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Nhận xét:

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)

\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{4}{5}\)

\(\Rightarrow S< \frac{4}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\) (Đpcm)

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

25 tháng 3 2017

Giải:

Đặt \(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

Ta có:

\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

\(\Rightarrow A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)

Nhận xét:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\Rightarrow A< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)

\(\Rightarrow A< \dfrac{4}{5}\left(1\right)\)

Lại có:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\)

\(\Rightarrow A>\dfrac{3}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{3}{5}< A< \dfrac{4}{5}\)

Vậy \(\dfrac{3}{5}< \dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{4}{5}\) (Đpcm)

22 tháng 4 2018

Đặt A=131+132+133+...+159+160A=131+132+133+...+159+160

Ta có:

A=131+132+133+...+159+160A=131+132+133+...+159+160

⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13

141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14

151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15

⇒A<13+14+15=4760<4860=45⇒A<13+14+15=4760<4860=45

⇒A<45(1)⇒A<45(1)

Lại có:

131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14

141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15

151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16

⇒A>14+15+16=3760>3660=35⇒A>14+15+16=3760>3660=35

⇒A>35(2)⇒A>35(2)

Từ (1)(1)(2)(2)

⇒35<A<45⇒35<A<45

Vậy 35<131+132+133+...+159+160<4535<131+132+133+...+159+160<45

15 tháng 2 2024

S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)

Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:

\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)

Cộng vế với vế ta có: 

S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)

\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)

Cộng vế với vế ta có:

\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)

Kết hợp (1) và (2) ta có: 

1 < S < 2 (đpcm)

 

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

20 tháng 3 2017

S sẽ có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 101 số hạng.

S= (1/31+1/32+...+1/40) + (1/41 + 1/42 +...+1/50) + (1/51 +1/52+...+1/60)

S < (1/30 + 1/30 +...+ 1/30) + ( 1/40 +1/40+...+1/40) + (1/50 +1/50+...+1/50)

S < 1/30 + 1/40 +1/50 ; S < 47/60 < 48/60 = 4/5 (1)

S > (1/40 + 1/40 +...=1/40) + (1/50 + 1/50 +...+1/50) + (1/60 +1/60+...+1/60)

S < 10/40 + 10/50 +10/60 ; S > 37/60 > 36/60 = 3/5 (2)

Tư (1) và (2) => 3/5 < S < 4/5

NHỚ TICK CHO MINK NHA, CHÚC BẠN HỌC TỐThihi

20 tháng 3 2017

S=(\(\dfrac{1}{31}\)+\(\dfrac{1}{32}\)+...+\(\dfrac{1}{40}\))+(\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+...+\(\dfrac{1}{50}\))+(\(\dfrac{1}{51}\)+\(\dfrac{1}{52}\)+...+\(\dfrac{1}{60}\))

=>\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)+\(\dfrac{10}{60}\)< S < \(\dfrac{10}{30}\)+\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)

=>\(\dfrac{37}{60}\)< S <\(\dfrac{47}{60}\)

=>\(\dfrac{3}{5}\)=\(\dfrac{36}{60}\)<\(\dfrac{37}{60}\)< S < \(\dfrac{47}{60}\)<\(\dfrac{48}{60}\)=\(\dfrac{4}{5}\)

=> \(\dfrac{3}{5}\)< S <\(\dfrac{4}{5}\)

leuleuok

1/31>1/40

1/32>1/40

...

1/40=1/40

=>1/31+1/32+...+1/40>1/40*10=1/4

1/41>1/50

1/42>1/50

...

1/50=1/50

=>1/41+1/42+...+1/50>10/50=1/5

1/51>1/60

1/52>1/60

...

1/60=1/60

=>1/51+1/52+...+1/60>10/60=1/6

=>S>1/4+1/5+1/6=3/5

1/31<1/30

1/32<1/30

...

1/40<1/30

=>1/31+1/32+...+1/40<1/30*10=1/3

1/41<1/40

1/42<1/40

...

1/50<1/40

=>1/41+1/42+...+1/50<10/40=1/4

1/51<1/50

1/52<1/50

...

1/60<1/50

=>1/51+1/52+...+1/60<10/50=1/5

=>S<1/3+1/4+1/5=4/5

4 tháng 5 2017

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

\(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

...

\(\dfrac{1}{40}=\dfrac{1}{40}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}>\dfrac{1}{50}\)

\(\dfrac{1}{42}>\dfrac{1}{50}\)

...

\(\dfrac{1}{50}=\dfrac{1}{50}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}>\dfrac{1}{60}\)

\(\dfrac{1}{52}>\dfrac{1}{60}\)

...

\(\dfrac{1}{60}=\dfrac{1}{60}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{10}{60}=\dfrac{1}{6}\)

=>\(S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{3}{5}\)

\(\dfrac{1}{31}< \dfrac{1}{30}\)

\(\dfrac{1}{32}< \dfrac{1}{30}\)

...

\(\dfrac{1}{40}< \dfrac{1}{30}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}< \dfrac{1}{40}\)

\(\dfrac{1}{42}< \dfrac{1}{40}\)

...

\(\dfrac{1}{50}< \dfrac{1}{40}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{60}< \dfrac{1}{50}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

=>\(S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{4}{5}\)

=>\(\dfrac{3}{5}< S< \dfrac{4}{5}\)