K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a, Ta có: cot 71 0  (= tan 19 0 ) < cot 69 0 15 ' (= tan 20 0 45 ' ) < tan 28 0  < tan 38 0 <tan 42 0

b, Tương tự câu a) ta có : cos 79 0 13 ' = sin 10 0 47 '  < sin 32 0  < sin 38 0 < cos 51 0 = sin 39 0

3 tháng 8 2017

a) =0.6455

b) =0.6032

c) =2.0145

d) mình thay anpha thành x nha

(tgx . cotgx =1) suy ra cotgx =1/tgx =2.1155

25 tháng 6 2019

a/ Có \(\sin B=\frac{AC}{BC};\sin C=\frac{AB}{BC};\cos B=\frac{AB}{BC};\cos C=\frac{AC}{BC}\)

\(\Rightarrow\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{AC-AB}{AB-AC}\)

Nếu AC<AB=> AC-AB<0 =>...<0

Nếu AC>AB=>AB-AC<0=>...<0

b/ làm tg tự câu a

c/ \(\cot B=\frac{AB}{AC};\cot C=\frac{AC}{AB}\)

\(\Rightarrow\cot B+\cot C=\frac{AB^2+AC^2}{AB.AC}\)

Quy đồng lên có: \(AB^2+AC^2>2AB.AC\) (luôn đúng vs AB\(\ne\) AC)

Vậy đẳng thức đc CM

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

23 tháng 8 2021
Dấu "<" hết #HT
23 tháng 8 2021

dấu nào là sao z b oi

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)