Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n_{SO_2}=0,15mol\)
\(n_{OH^-}=\left(0,2+0,2\right).0,5=0,2mol\)
\(\frac{n_{OH^-}}{n_{SO_2}}=\frac{4}{3}\)
\(\Rightarrow\) muối tạo thành là \(HSO_3^-,SO_3^{2-}\)
BTĐT: \(n\left(HSO_3\right)+2n\left(SO_3^{2-}\right)=0,1+0,1=0,2\)
\(n\left(HSO_3^-\right)+n\left(SO_3\right)=0,15\)
\(\Rightarrow n\left(HSO_3\right)=0,1;n\left(SO_3\right)=0,05\)
\(m=m_{k^+}+m_{Na^+}+m_{HSO_3^-}+m_{SO_3}=0,1\)\(.39+0,1.23+0,1.81+0,05.80=18,3g\)
Số mol H3PO4: 0,050 x 0,50 = 0,025 (mol).
H3PO4 + 3NaOH → Na3PO4 + 3H2O
1 mol 3 mol
0,025 mol 3 x 0,025 mol
Thể tích dung dịch NaOH: 0,075 lít hay 75 ml
Al4C3+12 H2O-->4 Al(OH)3 +3 CH4
2CH4--->C2H2+ 3H2 (Đk 1500 độ C, lam lạnh nhanh)
C2H2 +H2---> C2H4 ( dk PbCl)
nC2H4----> (C2H4)n ( TRUNG HOP)
NaCl +H2O--(dien phan CMN)--> NaOH +1/2 Cl2 +1/2H2
(C2H4)n +nCl2---> PVC
C2H4 + H2O---> C2H5OH
Theo đề bài ta có: me= 9,10-31 (kg); h= 6,625.10-34; \(\pi=3,14\) ;sai số tọa độ theo phương x là : \(\Delta x=\text{1Ǻ}=10^{-10}\left(m\right)\)
Hệ thức bất định Heisenberg ta có: \(\Delta x.\Delta p_x\ge\frac{h}{2.\pi}\)
Vậy thay số ta có độ bất định về động lượng của electron theo phương x xác định là : \(\Delta p_x=\frac{h}{2.\pi.\Delta x}=\frac{6,6.25.10^{-34}}{2.3,14.10^{-10}}=1,055.10^{-24}\left(kg.m.s^{-1}\right)\)
Mặt khác ta có: \(\Delta p_x=\Delta v_x.m=\Delta v_x.m_e\)
Suy ra ta có độ bất định về tốc độ của electron theo phương x là: \(\Delta v_x=\frac{\Delta p_x}{m_e}=\frac{1,055.10^{-24}}{9,1.10^{-31}}=1159270\left(m.s^{-1}\right)\approx1,16.10^6\left(m.s^{-1}\right)\)
theo bài ta có: \(\Delta x=1\text{Ǻ}=10^{-10}\left(m\right)\)
áp dụng hệ thức Heisenberg ta có: \(\Delta x.\Delta Px\ge\frac{h}{2\pi}\)
với \(\frac{h}{2\pi}=1,054.10^{-34}\)
\(\Rightarrow\Delta Px\ge\frac{h}{2\pi.\Delta x}=\frac{1,054.10^{-34}}{10^{-10}}=1,054.10^{-24}\left(kg.m.s^{-1}\right)\)
mặt khác ta lại có: \(\Delta Px=m.\Delta vx\Rightarrow\Delta vx=\frac{\Delta Px}{m}=\frac{1,054.10^{-24}}{9,1.10^{-31}}=1,16.10^6\left(\frac{m}{s}\right)\)
Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.
bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với
Ta có hệ thức De_Broglie: λ= h/m.chmc
Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv
a) Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s
→ λ= 6,625.10−3410−3.10−2=6,625.10-29 (m)
b) Ta có m=1g=10-3kg và v =100 km/s=105 m
→ λ= 6,625.10−3410−3.105= 6,625.10-36 (m)
c) Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg và v= 1000m/s
→ λ= 6,625.10−344,03.1000=9.97.10-11 (m)
a) áp dụng công thức
\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)
b)
\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)
c)
\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)
Ta có:
Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)
Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)
Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:
\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)
Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa
Ta có:
\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)
Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)
\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))
\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)
\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)
\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)
áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)
ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)
Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)
.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)
suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)
Đáp án A.