Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn tâm \(I\left(2;\frac{1}{2}\right)\)
\(\Delta\) song song d nên pt \(\Delta\) có dạng: \(x+2y+c=0\) (\(c\ne20\))
Dây cung có độ dài lớn nhất là đường kính
\(\Rightarrow\) Để \(\Delta\) cắt (C) theo 1 dây cung có độ dài lớn nhất khi và chỉ khi \(\Delta\) qua I
\(\Rightarrow2+\frac{1}{2}.2+c=0\Rightarrow c=-3\)
Phương trình \(\Delta\): \(x+2y-3=0\)
a) ta có : \(2x^2+3x\Leftrightarrow x\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)
vậy mệnh đề này đúng
b) ta có số nguyên có 2 dạng :
+) \(x=2a\Rightarrow x^2=4x^2⋮2\) \(\Rightarrow x=2a\) là thỏa mãn
+) \(x=2a+1\Rightarrow x^2=4a^2+4a+1⋮̸2\) \(\Rightarrow x=2a+1\) là không thỏa mãn
\(\Rightarrow x=2a⋮2\)
vậy mệnh đề này đúng
c) ta có : vì phương trình \(X^2-aX+\left(a-1\right)\)
có : \(\Delta=a^2-4\left(a-1\right)=a^2-4a+4=\left(a-2\right)^2\ge0\)
luôn có nghiệm \(\Rightarrow\) \(x+y+xy\) có thể bằng \(-1\)
\(\Rightarrow\) mệnh đề này sai
d) cái này thì theo fetmat thì phải .
\(\Rightarrow n=2\) là duy nhất
\(\Rightarrow\) mệnh đề này đúng
vậy có \(3\) mệnh đề đúng
\(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(\left\{{}\begin{matrix}5^{36}=\left(5^3\right)^{12}=125^{12}\\11^{24}=\left(11^2\right)^{12}=121^{12}\end{matrix}\right.\) \(\Rightarrow5^{36}>11^{24}\)
\(2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2017\ge0\\2017-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2017\\x\le2017\end{matrix}\right.\) \(\Rightarrow x=2017\)
Thay \(x=2017\) vào ta được:
\(\sqrt{2017-2017}>\sqrt{2017-2017}\Rightarrow0>0\) (vô lý \(\Rightarrow\) loại)
Vậy tập nghiệm của BPT là \(S=\varnothing\)
Chọn C.
Sản lượng trung bình của 40 thửa ruộng là:
Phương sai là