Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}.\)
\(=2\sqrt{\left(\left(-5\right)^3\right)^2}+3\sqrt{\left(\left(-2\right)^4\right)^2}\)
\(=2\cdot\left(-5\right)^3+3\cdot\left(-2\right)^4\)
\(=2\cdot125+3\cdot16=250+48=298\)
\(\Rightarrow2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}=298\)
\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2\times125+3\times16\)
\(=250+48\)
\(=298\)
a, \(5\sqrt{\left(-2\right)^4}=5\sqrt{2^4}=5.2^2=5.4=20\)
b, \(-4\sqrt{\left(-3\right)^6}=-4\sqrt{3^6}=-4.3^3=-4.27=-108\)
c,\(\sqrt{\sqrt{\left(-5\right)^8}}=\sqrt{\sqrt{5^8}}=\sqrt{5^4}=5^2=25\)
d ,\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2\sqrt{5^6}+3\sqrt{2^8}\)
=\(2.5^3+3.2^4=2.125+3.16=298\)
a) \(5\sqrt{\left(-2\right)^4}\) \(=5\left|\left(-2\right)^2\right|=5.4=20\)
b) \(-4\sqrt{\left(-3\right)^6}=-4\left|\left(-3\right)^3\right|=-4.27=-108\)
c) \(\sqrt{\sqrt{\left(-5\right)^8}}=\left|\left(-5\right)^4\right|=5^4=625\)
d) \(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\) \(=2\left|\left(-5\right)^3\right|+3\left|\left(-2\right)^4\right|\)
\(=-2.\left(-125\right)+3.16\)
\(= 250 + 48 = 298\)
Rút gọn:
\(A=\sqrt{\frac{1}{x^2-4x+4}}+\frac{-4}{x^2-2^2}\)
\(=\sqrt{\frac{1}{\left(x-2\right)^2}}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{1}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-4}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}\)
Thay x=3 vào A ta được \(\frac{1}{3+2}=\frac{1}{5}\)
a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
. \(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)
Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\sqrt{2}+1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
- 4 - 3 6 = - 4 - 3 3 2 = - 4 . - 3 3 = - 4 . - 27 = - 4 . 27 = - 108