Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Câu 1:
\(\left(5x-x-\frac{1}{2}\right)2x\)
\(=\left(4x-\frac{1}{2}\right)2x\)
\(=4x.2x-\frac{1}{2}.2x\)
\(=8x^2-x\)
\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)
\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)
\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)
\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)
\(=x^4+8x^3+19x^2+24x+48\)
Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\): \(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)
Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(= (x²+2xy+y²)-(x²-2xy+y²)\)
\(= x²+2xy+y²-x²+2xy-y²\)
\(= 4xy\)
\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)
Câu 2:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(x^2.\left(x-1\right)+4-4x=0\)
\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x-2=0\Rightarrow x=2\)
Trường hợp 3: \(x+2=0\Rightarrow x=-2\)
Câu 3: Bạn xem lại đề bài nhé.
Bài 1:
a) \(x.\left(x^2-2xy+1\right)=x^3-2x^2y+x\)
b) \(\left(2x-3\right).\left(x+2\right)=2x^2+4x-3x-6=2x^2-x-6\)
Bài 2:
a) \(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)
b) \(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x.\left(x-y\right)+2.\left(x-y\right)=\left(x-y\right).\left(x+2\right)\)
c) Đề sai.
a) N = (a - 3b)2 - (a + 3b)2 - (a - 1)(b - 2)
= [a - 3b + (a + 3b)][a - 3b - (a + 3b)] - [a(b - 2) - 1(b - 2)]
= (a - 3b + a + 3b)(a - 3b - a - 3b) - (ab - 2a - b + 2)
= 2a.(-6b) - ab + 2a + b - 2
= -12ab - ab + 2a + b - 2
= -13ab + 2a + b - 2
Thay a = \(\frac{1}{2}\)và b = -3 vào biểu thức ta có :
N = -13ab + 2a + b - 2 = \(\left(-13\right)\cdot\frac{1}{2}\cdot\left(-3\right)+2\cdot\frac{1}{2}+\left(-3\right)-2=\frac{31}{2}\)
b) P = (2x - 3)(2x + 3) - (2x + 1)2
= (2x)2 - 32 - [(2x)2 + 2.2x.1 + 12 ]
= 4x2 - 9 - (4x2 + 4x + 1)
= 4x2 - 9 - 4x2 + 4x + 1
= (4x2 - 4x2) + (-9 +1) + 4x
= -8 + 4x
Thay x = -2005 vào biểu thức ta có :
P = -8 + 4x = -8 + 4.(-2005) = -8028
c) Q = (y - 3)(y + 3)(y2 + 9) - (y2 + 2)(y2 - 2)
= (y2 - 9)(y2 + 9) - (y2 + 2)(y2 - 2)
= (y2 - 81) - (y2 - 4)
= y2 - 81 - y2 + 4 = -77
1.=(x-y)(5x+1)
2.=(x+3)(2x+1)
3.=(3x-2y)2(1+1)=2(3x-2y)2
4.bạn chép sai hay sao ý
5.=(2x-3y)2
6. = -(x+y)2
7. = -(a-5)2
1. 5x(x-y)-(y-x)
= 5x(x-y)+(x-y)
= (x-y)(5x+1)
2. 2x(x+3)+(3+x)
= (x+3)(2x+1)
3. (3x-2y)2-(2x-3y)2
= (3x-2y-2x+3y)(3x-2y+2x-3y)
=(x+y)(5x-5y)
=5(x+y)(x-y)
4. 4-(a-b)2
= 22-(a-b)2
= (2-a+b)(2+a-b)
5. 4x2-12xy+9y2
= (2x-3y)2
6. -x2-2xy-y2
= -(x+y)2
7. 10a-a2-25
= -a2+10a-25
= -(a-5)2
Bài1: Phân tích các đa thức sau thành nhân tử
a)36-4x2+4xy-y2
\(=6^2-\left(4x^2-4xy+y^2\right)\)
\(=6^2-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b)2x4+3x2-5
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)
B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)
\(=\left(6-2x+y\right)\left(6+2x-y\right)\)
c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)
d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)
e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)
a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)
\(=4x^2-9y^2\)
Thay x=1/2 và y=1/3 vào N, ta được:
\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)
\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)
=1-1
=0
b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x\right)^3-y^3=8x^3-y^3\)
Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)