Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x^2-4x+7}{x^2-2x+2}=\frac{2.\left(x^2-2x+2\right)+3}{x^2-2x+2}=2+\frac{3}{x^2-2x+1+1}=2+\frac{3}{\left(x-1\right)^2+1}\)
\(\text{Để A max}\Leftrightarrow\left(\frac{3}{\left(x-1\right)^2+1}\right)max\Leftrightarrow\left[\left(x-1\right)^2+1\right]min\)vì (x-1)2+1 > 0
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy Max A=5 <=> x=1
\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)+3}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)}{x^2-2x+2}+\frac{3}{x^2-2x+2}\)
\(A=2+\frac{3}{x^2-2x+1+1}\)
\(A=2+\frac{3}{\left(x-1\right)^2+1}\le2+\frac{3}{0+1}=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(4x^2+4x+10=\left(2x+1\right)^2+9\)
Ma \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+9\ge9\)
\(\Rightarrow\frac{3}{4x^2+4x+10}\le\frac{3}{9}=\frac{1}{3}\)
(dau "=" xay ra khi x=\(\frac{-1}{2}\)
Bài làm:
a) Sửa đề:
\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(A_{Max}=4\Leftrightarrow x=2\)
b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)
\(=-\left(x+2\right)^2+9\le9\)
Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(B_{Max}=9\Leftrightarrow x=-2\)
c) \(C=-x^2-2y^2-2xy+2y\)
\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)
\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
a) Sửa : A = 4x - x2
A = -x2 + 4x - 4 + 4
A = -( x2 - 4x + 4 ) + 4
A = -( x - 2 )2 + 4
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMax = 4 , đạt được khi x = 2
b) B = -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy BMax = 9, đạt được khi x = -2
c) C = -x2 - 2y2 - 2xy + 2y
= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1
= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1
= -( x + y )2 - ( y - 1 )2 + 1
\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy CMax = 1 , đạt được khi x = -1 ; y = 1
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
Cả 2 biểu thức nói trên đều ko có GTLN