Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1}{2017}\)
Giải:
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}\)
\(\Leftrightarrow A=\dfrac{1.2...201.2016}{2.3...2016.2017}\)
\(\Leftrightarrow A=\dfrac{1.2.3...2015.2016}{2017.2.3...2015.2016.}\)
Rút gọ cả tử và mẫu với 2.3...2015.2016, ta được:
\(A=\dfrac{1}{2017}\)
Vậy \(A=\dfrac{1}{2017}\).
Chúc bạn học tốt!
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}......1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5.....9.11}\) ( Bước này bạn bỏ đi cũng được )
\(=\dfrac{\left(2.3.4.....10\right).\left(2.3.4.....10\right)}{\left(1.2.3.....9\right).\left(3.4.5.....11\right)}\)
\(=\dfrac{\left(2.3.4.....9\right).10.2.\left(3.4.5.....10\right)}{1.\left(2.3.4.....9\right).\left(3.4.5.....10\right).11}\)
\(=\dfrac{10.2}{1.11}=\dfrac{20}{11}=1\dfrac{9}{11}\)
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}.....1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5....9.11}\)
\(=\dfrac{2.3.4....10}{1.2.3....9}.\dfrac{2.3.4...10}{3.4.5....11}\)
\(=10.\dfrac{2}{11}=\dfrac{20}{11}\)
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
Giải:
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
\(=\dfrac{1.2.3...99}{2.3.4...100}\)
\(=\dfrac{1}{100}\)
Vậy ...
\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)
Nhận xét
thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10
\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)
\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)
\(Q=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot1\dfrac{1}{2015}\cdot20\%\)
\(=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot\dfrac{2016}{2015}\cdot\dfrac{1}{5}\\ =\left(-\dfrac{2015}{2016}\cdot\dfrac{2016}{2015}\right)\cdot\left(-50\cdot\dfrac{1}{5}\right)\cdot-\dfrac{153}{154}\\ =\left(-1\right)\cdot\left(-10\right)\cdot\left(-\dfrac{153}{154}\right)\\ =10\cdot\left(-\dfrac{153}{154}\right)\\ =-\dfrac{1530}{154}\\ =-\dfrac{765}{77}\)