Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\)
\(\Rightarrow2b+c-a+a=3a\)
\(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\)
Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\)
\(\Rightarrow2c+a-3b=0\)
\(\Rightarrow3b-2c=a\)
Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\)
\(\Rightarrow2a+b-c+c=3c\)
\(\Rightarrow2a +b=3c\)
\(\Rightarrow3c-2a=b\)
Khi đó:
\(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!)
Vậy \(P=\dfrac{1}{8}.\)
Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.
Ta có : \(\dfrac{2a}{3}=\dfrac{5b}{2}=\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}=\dfrac{a+b}{\dfrac{3}{2}+\dfrac{2}{5}}=\dfrac{38}{\dfrac{19}{10}}=20\)
(vì a+b=38 )
Với \(\dfrac{a}{\dfrac{3}{2}}=20\) thì a=30
Với \(\dfrac{b}{\dfrac{2}{5}}=20\) thì b=8
Vậy b=8 ;a=30
Ta có :\(\dfrac{2a}{3}=\dfrac{5b}{2}\Rightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}\) và \(a+b=38\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}=\dfrac{a+b}{\dfrac{3}{2}+\dfrac{2}{5}}=\dfrac{38}{\dfrac{19}{10}}=20\)
\(\Rightarrow\left[{}\begin{matrix}a=20.\dfrac{3}{2}\\b=20.\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=30\\b=8\end{matrix}\right.\)
\(\Rightarrow3a-2b=3.30-2.8=74\)
Vậy...........................
Ta có : \(\dfrac{2a}{3}=\dfrac{5b}{2}\)
\(\Rightarrow4a=15b\\ \Rightarrow\dfrac{a}{15}=\dfrac{b}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{15}=\dfrac{b}{4}=\dfrac{a+b}{15+4}=\dfrac{38}{19}=2\\ \Rightarrow\left\{{}\begin{matrix}a=2\cdot15=30\\b=2\cdot4=8\end{matrix}\right.\)
Vậy \(3a-2b=3\cdot30-2\cdot8=90-16=74\)
Ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\dfrac{2b+c-a}{a}=2\Leftrightarrow2b+c-a=2a\Leftrightarrow2b+c=3a\Leftrightarrow c=3a-2b\)
Và : \(2b+c=3a\Leftrightarrow2b=3a-c\)
Tương tự: \(3b-2c=a\) và \(2c=3b-a\)
\(3c-2a=b\) và \(2a=3c-b\)
Thay vào Q, ta được:
\(Q=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)
\(Q=6a^2b-3a^2=6\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}-3\cdot\dfrac{1}{9}=\dfrac{3}{2}\)
cảm ơn nhoa