Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1}{3\sqrt{x}}-\sqrt{x}-1\right)\right]:\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1-3x-3\sqrt{x}}{3\sqrt{x}}\right)\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{-3x-2\sqrt{x}+1}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(-3\sqrt{x}+1\right)}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{-6\sqrt{x}+2}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}}\right):\frac{\sqrt{x+1}}{3}\)
\(P=\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}.\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\frac{3}{\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{3}{\sqrt{x}-1}\)