Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
a) đặc \(x^2=t\left(t\ge0\right)\)
pt \(\Leftrightarrow\) \(t^2-8t-9=0\)
\(\Delta'=\left(-4\right)^2-1\left(-9\right)\) = \(16+9=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(t_1=\dfrac{4+\sqrt{25}}{1}=9\left(tmđk\right)\)
\(t_2=\dfrac{4-\sqrt{25}}{1}=-1\left(loại\right)\)
\(t=x^2=9\) \(\Leftrightarrow\) \(x=\pm9\)
vậy \(x=\pm9\)
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
Giải:
Chia phương trình cho \(x^2\) ta có:
\(x^2+\frac{1}{x^2}+ax+\frac{b}{x}+2=0\left(1\right)\)
\(\left(1\right)-\left(ax+\frac{b}{x}\right)=x^2+\frac{1}{x^2}+2\Leftrightarrow\left(ax+\frac{b}{x}\right)^2=\left(x^2+\frac{1}{x^2}+2\right)^2\)
Áp dụng BĐT Bunhiacopski ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)
Vậy \(\left(ax+\frac{b}{x}\right)^2\le\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\) nên \(\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\ge\left(x^2+\frac{1}{x^2}+2\right)^2\)
Đặt \(x^2+\frac{1}{x^2}=t\left(t\ge2\right)\) nên \(a^2+b^2\ge\frac{\left(t+2\right)^2}{t}=t+\frac{4}{t}+4\ge2\sqrt{t.\frac{4}{t}}+4=8\)
Dấu "=" xảy ra khi \(x^2+\frac{1}{x^2}=2\Leftrightarrow x=1\) và \(a=b\) sẽ tìm ra a
Đặt x 2 = t (t ≥ 0) ta được phương trình t 2 – 6t – 7 = 0 (*)
Nhận thấy a – b + c = 1 + 6 – 7 = 0 nên phương trình (*) có hai nghiệm t 1 = − 1 ( L ) ; t 2 = 7 ( N )
Thay lại cách đặt ta có x 2 = 7 ⇔ x = ± 7
Vậy phương trình đã cho có hai nghiệm
Đáp án: C