K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có \(y'=3x^2-6x\)

Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)

Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)

Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)

\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)

Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán

26 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm

Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)

Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)

Phương trình tiếp tuyến là :  \(y-2=0\left(x-1\right)\) hay y = 2

b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)

Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)

c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)

Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)

d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)

                                                                      \(\Leftrightarrow x_0=0;x_0=3\)

\(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)

\(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)

Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)

e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)

\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)

Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)

Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)

Phương trình đường thẳng AB : \(2x+y-4=0\)

Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)

\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)

\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)

* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)

* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)

 
31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

25 tháng 12 2019

\(M=\left(x_0;y_0\right)\)

Hệ số góc của tiếp tuyến của (C) qua M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)

Vì tiếp tuyến qua M song song với đường thẳng \(y=9x+2\) nên \(k=9\)

\(\Rightarrow3x_0^2-6x_0=9\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)

\(x_0=3\Rightarrow y_0=2\Rightarrow Pttt:y=9\left(x-3\right)+2=9x-25\)

\(x_0=-1\Rightarrow y_0=-2\Rightarrow Pttt:y=9\left(x+1\right)-2=9x+7\)

NV
20 tháng 1 2019

Tiếp tuyến \(y=kx+b\) qua 1 điểm \(A\left(x_0;y_0\right)\) bất kì thuộc (C) có hệ số góc

\(k=f'\left(x_0\right)=3x_0^2-6x_0\)

Để tiếp tuyến song song với \(y=9x-25\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}k=9\\b\ne-25\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_0^2-6x_0=9\\x_0^3-3x_0^2+2\ne25\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\x_0=3\end{matrix}\right.\)

\(\Rightarrow\) có 2 tiếp tuyến thỏa mãn

20 tháng 1 2019

c ơi t làm ra 1 tiếp tuyến tm thôi

27 tháng 3 2016

\(y'=2x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại, cực tiểu

\(\Delta'=9\left(m+1\right)^2=3.9>0\)

     \(=\left(m+1\right)^2-3>0\)

\(\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có : \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

Gọi tọa độ điểm cực đại và cực tiểu là \(\left(x_1;y_1\right)\) và  \(\left(x_2;y_2\right)\)

=> \(y_1=-2\left(m^2+2m-2\right)x_1+4m+1\)

   \(y_2=-2\left(m^2+2m-2\right)x_2+4m+1\)

Vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng \(y=\frac{1}{2}x\) ta có điều kiện cần là :

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\)

\(\Leftrightarrow m^2+2m-2=1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Theo định lí Viet ta có \(\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=3\end{cases}\)

Khi m =1 => phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2x+5\)

Tọa độ trung điểm cực đại và cực tiểu là :

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiểu là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\Rightarrow m=1\) thỏa mãn

Khi m=-3 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x-11

(làm tương tự cách như trên)

 
26 tháng 3 2016

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

30 tháng 8 2023

1

31 tháng 3 2017

a) Tập xác định: R; y' = 3(1 - x2); y' = 0 ⇔ x = ± 1 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' = 3x2 + 8x + 4; y' = 0 ⇔ x= -2, x = .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ;

y' = 3x2 + 2x + 9 > 0, ∀x. Vậy hàm số luôn đồng biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

d) Tập xác định : R ;

y' = -6x2 ≤ 0, ∀x. Vậy hàm số luôn nghịch biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

31 tháng 3 2017

Lời giải hay đó!!!

Nhưng không biết người giải nó có hiểu nó không....gianroi (thở dài)