K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Ta có 7 x 2 y 2   –   21 x y 2 z   +   7 x y z   +   14 x y

= 7xy.xy – 7xy.3yz + 7xy.z + 7xy.2 = 7xy(xy – 3yz + z + 2)

Đáp án cần chọn là: D

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

8 tháng 10 2018

a) \(x^2-y^2-x-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left(x+y-z\right)\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

19 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b)\(x^2-2xy+y^2-z^2\)

\(=\left(x^2-2xy+y^2\right)-z^2\)

\(=\left(x-y\right)^2-z^2\)

\(=\left(x-y-z\right)\left(x-y+z\right)\)

c)\(5x-5y+ax-ay\)

\(=5\left(x-y\right)+a\left(x-y\right)\)

\(=\left(5+a\right)\left(x-y\right)\)

d)\(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

Bài 2 : 

a) \(x^2-2xy-47^2+y^2\)

\(=x^2-2xy+y^2-47^2\)

\(=\left(x-y\right)^2-47^2\)

\(=\left(x-y-47\right)\left(x-y+47\right)\)

19 tháng 10 2021

Bài 1

a) x2 - xy + x - y

= x.(x - y) + (x - y) 

= (x - y) . (x + 1) 

b) x2 - 2xy + y2 - z2

= (x - y)2 - z2

= (x - y - z) . (x - y + z)

c) 5x - 5y + ax - ay

= 5 . (x - y) + a . (x - y)

= (5 + a ) . (x - y)

d) a3 - a2x - ay + xy 

=

a3−a2x−ay+xya3−a2x−ay+xy

=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)

=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)

=(a2−y)(a−x)

29 tháng 11 2019

A

B(hơi sai)

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn