Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko viết lại đề
\(A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}+\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}+\frac{2^{12}.3^{10}\left(1+5\right)}{2.\left(2^{12}.3^{12}\right)}\)
\(=\frac{2}{3.4}+\frac{2^{12}.3^{10}.6}{2.2^{12}.3^{12}}=\frac{1}{6}+\frac{1}{3}=\frac{1}{2}\)
Vậy A= \(\frac{1}{2}\)
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.234.8^2}=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^6.3^4}{3^8.\left(3^4\right)^4.3^5.\left(2^3\right)^2}\)
\(M=\frac{3^8.3^{15}.3^6.3^4}{3^{18}.3^{16}.3^5.2^6}=\frac{81}{64}\)
\(N=\frac{4^6.9^5.6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(N=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}\)
\(N=\frac{4}{5}\)
Câu 1 xem kỉ đề
\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)
a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35
=212.35-36+36+212.35
=213.35
b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)
=496.5-7.5-2.495
=712.5-7.5-2.710
ban nao co chuyen shin ko cho minh muon minh giai cho 10 bai nhu the i love pac pac
\(A=\frac{2^{12}.3^4-4^5.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)
\(A=\frac{2^{12}.3^4-2^{10}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(A=\frac{2^{10}.3^4\left(2^2-1\right)}{2^{10}.3^4\left(2^2.3^2+2^2.3\right)}\)
\(A=\frac{2^2-1}{2^2.3^2+2^2.3}\)
\(A=\frac{4-1}{36+12}\)
\(A=\frac{3}{48}=\frac{1}{16}\)
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
c) G = \(\frac{636363.37-373737.63}{1+2+3+...+2017}\)
G = \(\frac{63.10101.37-37.10101.63}{1+2+3+...+2017}\)
G = \(\frac{0}{1+2+3+...+2017}\)
=> G = 0
Vậy G = 0
a) \(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}.\frac{612}{1225}\)
\(\Rightarrow E=\frac{306}{1225}\)
Vậy...
b) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\frac{2.1}{1}=2\)
d) Bạn xem lại đề nhé
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6}-\frac{5^{10}.7^4-25^5.49^2}{\left(125.7\right)3+5^9.\left(14\right)^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+8\right)}\)
\(=\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}=\frac{2}{12}-\frac{-30}{9}\)
\(=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)
Bạn ơi cho mk hỏi chỗ đoạn kia bạn lấy 1-7 ở đâu và 1 + 8 ở đâu
\(\frac{2^{12}.3^5-4^6.3^6}{2^{12}.9^3+8^4.3^5}\)
\(=\frac{2^{12}.3^5-4^6.3.3^5}{2^{12}.3.3^5+4^6.3^5}\)
\(=\frac{1-3}{3+1}\)
\(=\frac{-1}{2}\)
P=212.35-46.36/212.93+84.35
P=212.35-(22)6.36/212.(33)3+(23)4.35
P=212.35-212.36/212.39+212.35
P=212.(35-36)/212.(39+35)
P=35-36/39+35