\(P=1:\left(\frac{x+2\sqrt{x}-2}{x\sqrt{x}+1}-\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{1}{\sqrt{x}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

điều kiện \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

a) A= (\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}\)\(+\frac{\sqrt{x}}{x-1}\)) : \(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(1+\sqrt{x}\right)}\))

=\(\frac{x+2\sqrt{x}}{x-1}:\frac{x+2\sqrt{x}}{x\left(1+\sqrt{x}\right)}\)=\(\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{x}{\sqrt{x}-1}\)

b) A<1 <=> \(\frac{x}{\sqrt{x}-1}< 1< =>\frac{x-\sqrt{x}+1}{\sqrt{x}-1}< 0\)<=> \(\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}-1}< 0\)<=> \(\sqrt{x}-1< 0< =>x< 1\)kết hợp với điều kiện x>0 ta được 0<x<1

12 tháng 10 2019

c) Min \(\sqrt{A}\)

Điều kiện A \(\ge0< =>\frac{x}{\sqrt{x}-1}\ge0< =>\hept{\begin{cases}x\ge0\\\sqrt{x}-1>0\end{cases}}< =>x>1;\)

 (\(\sqrt{x}-2\))2 = x-4\(\sqrt{x}+4\)\(\ge0\)<=>x\(\ge4\left(\sqrt{x}-1\right)\) <=> \(\frac{x}{\sqrt{x}-1}\ge4\) (vì \(\sqrt{x}-1>0\))

hay A \(\ge4=>\sqrt{A}\ge2\)

\(\sqrt{A}=2\) khi \(\sqrt{x}-2=0< =>x=4\)

11 tháng 10 2016

a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\left(ĐK:x>0;x\ne1\right)\)

\(=\left[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+2-2+x}\)

\(=\frac{x+2\sqrt{x}}{\sqrt{x}-1}\cdot\frac{x}{2\sqrt{x}+x}=\frac{x}{\sqrt{x}-1}\)

b)Để P>2

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}>2\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-2>0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\left(tm\right)\)

Vậy x>1 thì P>2

1 tháng 9 2017

Có biết đâu mà giúp.Toàn x với x.