Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'
=> OO'// d // b mà O BD mp (b;d)
=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm
b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành
tham khảo:
a) Vì a//a', d⊥a nên d⊥a′, Hay EF⊥OB
Tam giác EBF có OB⊥EF; O là trung điểm EF nên tam giác EBF cân tại B. Suy ra BE = BF
Tương tự ta chứng minh được CE = CF
Suy ra tam giác CEB bằng tam giác CFB
b) Vì tam giác CEB và CFB bằng nhau nên DE = DF
Nên tam giác DEF cân tại D có DO là trung tuyến nên DO⊥EF
Suy ra d⊥c
Đáp án B
Hình biểu diễn của 2 đường thẳng song song là 2 đường thẳng song song