K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Nếu a, b là những số thực và  a ≤ b   thì  a 2 ≤ b 2 ⇔ a 2 ≤ b 2

12 tháng 2 2018

Với mọi x ta luôn có: - x ≤ x

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó

12 tháng 7 2018

Nếu a = b  và b >0 thì a = b  ( *)

*  Với a> 0 thì  từ (*) suy ra: a= b.

⇒ 1 a - 1 b ≤ 0

* Với a <  0  từ (*) – a = b; ta có:

⇒ 1 a < 0 ;   1 b = 1 - a = - 1 a ⇒ 1 a - 1 b = 1 a - - 1 a = 2 a < 0   ( vì a < 0 )

Như vậy, ta luôn có:  1 a - 1 b ≤ 0

Câu 1: B
Câu 2: A

Câu 3: C

Câu 4: D

NV
29 tháng 6 2020

a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)

b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)

c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?

d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)