Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Động lượng của hạt giảm 3 lần --> tốc độ giảm 3 lần --> Vị trí trạng thái tăng 3 lần
Do vậy, e chuyển từ trạng thái 1 lên trạng thái 3.
Bước sóng nhỏ nhất khi nguyên tử chuyển từ mức 3 về mức 1.
\(\Rightarrow \dfrac{hc}{\lambda}=(-\dfrac{1}{3^2}+1).13,6.1,6.10^{-19}\)
\(\Rightarrow \lambda=...\)
\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)
Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV.
Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.
\(E_1 = -13,6eV\), \(E_3 = -1,51 eV\)
\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)
Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)
Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.
Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn
\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
Bước sóng dài nhất trong quang phổ Banmel sẽ là bước sóng ứng với bước chuyển từ 3 xuống 2
\(E=\frac{hc}{\lambda}=E_3-E_2=A\text{/}4-A\text{/}9\)
\(\Rightarrow A=2,18.10^{-19}J\)
Mình không hiểu câu hỏi của bạn lắm nhưng theo mình đoán bước sóng ngắn nhất này sẽ từ \(\text{n=∞ }\)
đến n=1
Năng lượng sẽ đúng bằng A
\(\lambda=\text{91,1528nm }\)
câu hỏi của bn có ở đây nhá Câu hỏi của HOC24 - Học và thi online với HOC24
1) Năng lượng 3,5 eV chính là công thoát A. Ta có:
\(A=3,5eV=5,6.10^{-19}J\)
Bước sóng ánh sáng cần chiếu vào kim loại chính là giới hạn quang điện ứng với kim loại đó:
\(\lambda_0=\frac{hc}{\lambda}=0,355\mu m\)
2) Khi dùng ánh sáng đơn sắc trên chiếu vào catôt của tế bào quang điện, năng lượng của phôtôn chỉ dùng để tạo công thoát A nên vận tốc ban đầu \(v_0\) của quang electron bằng 0. Dưới tác dụng của điện trường, công của lực điện trường tác dụng lên electron từ catôt đến anôt cung cấp cho electron động năng khi đến anôt:
\(\frac{mv^2}{2}=eU\); suy ra vận tốc electron khi đến anôt:
\(v=\sqrt{\frac{2eU}{m}}=4.10^6m\text{/}s\)
electrong chuyển từ trạng thái dừng n = 3 xuống trạng thái dừng n =2 => nguyên tử hiđrô đã phát ra một năng lượng đúng bằng
\(\Delta E = E_{cao}-E_{thap}= -\frac{13,6}{3^2}-(-\frac{13,6}{2^2})= 13,6.(\frac{1}{4}-\frac{1}{9})= 1,89 eV= 1,89.1,6.10^{-19}V.\)
Mà \(\Delta E = \frac{hc}{\lambda}=> \lambda = \frac{hc}{\Delta E}= \frac{6,625.10^{-34}.3.10^8}{1,89.1,6.10^{-19}}= 6,57.10^{-7}m = 0,657 \mu m.\)
a) \(\Delta E=E_3-E_1=E_0\left(\frac{1}{1}-\frac{1}{9}=12,09eV\right)\)
\(\frac{hc}{\lambda}=E_3-E_1\rightarrow\lambda=\frac{hc}{\Delta E}=1,027.10^{-10}m\)
b) Năng lượng cần thiết để làm bật electron ra khỏi nguyên tử hidro bằng:
\(\left|E_1\right|=13,6eV\)
Áp dụng định luật bảo toàn năng lượng:
\(16eV=\frac{mv^2}{2}+\left|E_1\right|\)\(\rightarrow\frac{mv^2}{2}=2,4eV=3,84.10^{-19}J\rightarrow\)\(v=9,2.10^5m\text{/}s\)