Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2020a+\frac{\left(b-c\right)^2}{2}}\le\sqrt{2020a+\frac{\left(b+c\right)^2}{2}}=\sqrt{2020a+\frac{\left(1010-a\right)^2}{2}}\)
\(=\sqrt{\frac{1}{2}\left(a^2+2020a+1010^2\right)}=\frac{1}{\sqrt{2}}\left(a+1010\right)\)
=> \(VT\le\frac{1}{\sqrt{2}}\left(a+b+c+3.1010\right)=2020\sqrt{2}\)
Dấu "=" xảy ra khi a=1010;b=0;c=0 và các hoán vị
Nguyễn Thu Huyền Chỗ nào có \(\le\) thì chuyển thành \(\ge\) nhé. Thế là ok. Tại mk bấm nhầm
\(\text{Ta có }:a^2+ab+b^2=\left(a^2+2ab+b^2\right)-ab\\ =\left(a+b\right)^2-ab\overset{BĐT\text{ }Cô-si}{\le}\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3}{4}\left(a+b\right)^2\\ \Rightarrow\sqrt{a^2+ab+b^2}\le\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự : \(\sqrt{b^2+bc+c^2}\le\frac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{a^2+ac+c^2}\le\frac{\sqrt{3}}{2}\left(a+c\right)\\ \Rightarrow\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{a^2+ac+c^2}\\ \le\frac{\sqrt{3}}{2}\left(a+b\right)+\frac{\sqrt{3}}{2}\left(b+c\right)+\frac{\sqrt{3}}{2}\left(a+c\right)\\= \frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a=b\\b=c\\a=c\\a+b+c=3\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=1\)
\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)
\(=\sqrt{2\left(a+b\right)^2+\left(a-b\right)^2}+\sqrt{2\left(b+c\right)^2+\left(b-c\right)^2}+\sqrt{2\left(c+a\right)^2+\left(c-a\right)^2}\)
\(\ge2\sqrt{2}\left(a+b+c\right)\ge\sqrt{2}\left(2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3\right)=6\sqrt{2}\)
Vậy GTNN của P là \(6\sqrt{2}\Leftrightarrow a=b=c=1\)
a) Để B = A + 1 thì:
\(\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}+1\)
\(\Leftrightarrow\frac{\sqrt{x}̣\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{2x-3\sqrt{x}-2+\sqrt{x}-2}{\sqrt{x}-2}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\frac{2x-2\sqrt{x}-4}{\sqrt{x}-2}\)
\(\Leftrightarrow x-1=\frac{2\left(x-\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(\Leftrightarrow x-1=\frac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-2}\)
\(\Leftrightarrow x-1=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-2\sqrt{x}-1-2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{2}\right)\left(\sqrt{x}-1+\sqrt{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1+\sqrt{2}\\\sqrt{x}=1-\sqrt{2}\end{matrix}\right.\) ( Loại \(\sqrt{x}=1-\sqrt{2}\) vì \(\sqrt{x}\ge0\) )
Vậy \(x=3+2\sqrt{2}\)
b) Ta có: B = x -1 ( theo kết quả rút gọn ở câu a )
\(A=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Do đó: \(C=B-A=x-1-2\sqrt{x}-1\)
\(C=\left(x-2\sqrt{x}+1\right)-3\)
\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\) với mọi x
Dấu bằng xảy ra khi: \(\sqrt{x}-1=0\Rightarrow x=1\)
Vậy min C = -3 khi và chỉ khi x = 1
b) đk: ...\(A=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(B=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)biết B=A-1=>\(x-1=2\sqrt{x}+1+1\) giải nốt ra đc nghiệm x=9
KL: vậy ...
Ta có
\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)
Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)
\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)
Tự làm tiếp
a)\(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=\sqrt{\left(2a-6\right)^2}=2a-6\)
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=\sqrt{\left[3\left(b-2\right)\right]^2}=3b-6\)
c) bạn xem lại đề
d)
\(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{\left(15a\right)^2}-3a=15a-3a=12a\)
e) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{\sqrt{16}}{\sqrt{x^2}}=\dfrac{4}{x}\)
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
\(=\sqrt{3\left(a+b\right)^2+2016\left(a-b\right)^2}+\sqrt{3\left(b+c\right)^2+2017\left(b-c\right)^2}+\sqrt{3\left(c+a\right)^2+2018\left(c-a\right)^2}\)
\(\ge2\sqrt{3}\left(a+b+c\right)\ge\frac{2}{\sqrt{3}}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge6\sqrt{3}\)