Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)
+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)
+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)
t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.
\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)
Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)
t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)
Đề bài thế này thì tổng hợp gần hết các dạng cơ bản của dao động điều hòa luôn r còn đâu :)
1/ \(v=-\omega A\sin\frac{\pi}{3}=-2\pi.5.\frac{\sqrt{3}}{2}=-5\pi\sqrt{3}\left(cm/s\right)\)
Ủa phương trình li độ x là như nào vậy? Như này ạ:\(x=5\cos\left(2\pi t-\frac{2\pi}{3}\right)?\)
2/ Câu này chả rõ ràng gì, ua li độ x=2,5 căn 3 theo chiều dương hay âm thì mới xác định được vận tốc dương hay âm chứ :(
\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow v=\omega\sqrt{A^2-x^2}=...\left(cm/s\right)\)
3/ \(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\frac{2\pi}{3}=-2,5\left(cm\right)\\v=-\omega A\sin\frac{2\pi}{3}< 0\end{matrix}\right.\) => Vật chuyển động theo chiều âm
Thời gian vật đi từ VTCB đến li độ \(x=-2,5\sqrt{3}\) là:
\(\Delta t_1=\frac{1}{\omega}.arc\sin\left(\frac{2,5\sqrt{3}}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
Thời gian vật đi từ VTCB đến li độ x=-2,5 là:
\(\Delta t_2=\frac{1}{\omega}arc\sin\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{6}=\frac{1}{12}\left(s\right)\)
\(\Rightarrow\sum t=\Delta t_1-\Delta t_2=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}\left(s\right)\)
4/\(\Delta t_1=2019.T=2019.1=2019\left(s\right)\)
\(\Delta t_2=\frac{1}{\omega}.arc\cos\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
\(\Delta t_3=\frac{T}{2}-\frac{1}{2\pi}arc\cos\left(\frac{2}{5}\right)=\frac{1}{2}-\frac{1}{2\pi}\frac{11}{30}\pi=\frac{19}{60}\left(s\right)\)
\(\sum t=\Delta t_1+\Delta t_2+\Delta t_3=...\)
5/ \(x=5\cos\left(2.1,125\pi-\frac{2\pi}{3}\right)\approx1,3\left(cm\right)\)
6/ \(\frac{\Delta t_2}{T}=1,25\Rightarrow\Delta t_2=T+\Delta t\Rightarrow\sum S=S_1+S_2=4A+S_2\)
\(t_1=0\Rightarrow\left\{{}\begin{matrix}x_1=-2,5\\v_1< 0\end{matrix}\right.;t_2=1,25\Rightarrow\left\{{}\begin{matrix}x_2=\frac{5\sqrt{3}}{2}\\v>0\end{matrix}\right.\)
\(\Rightarrow S_2=\frac{A}{2}+A+\frac{5\sqrt{3}}{2}=...\Rightarrow\sum S=...\)
7/ \(x=2,5\Rightarrow25=2,5^2+\frac{v^2}{4\pi^2}\Rightarrow v=2\pi\sqrt{25-2,5^2}=\pm5\pi\sqrt{3}\left(cm/s\right)\Rightarrow W_d=\frac{1}{2}mv^2=....\left(J\right)\)
8/ \(v_{tb}=\frac{S_{tb}}{t}\) Stb là uãng đường đi được trong 2,5s
Lười úa :( Tìm uãng đường đi trong 2,5s như câu 6 thui, chị tự làm nhé, có gì ko hiểu hỏi em
Ta có $x_1=x_{12}-x_2=x_{12}-(x_{23}-(x_{13}-x_1)$
$\Rightarrow$ $2x_1=x_{12}-x_{23}+x_{13}$. Bấm máy tính ta được
${x_1}={3\sqrt{6}}\cos\left({\pi t + \dfrac{\pi}{12}} \right)$
${x_3}={3\sqrt{2}}\cos\left({\pi t + \dfrac{7\pi}{12}} \right)$
Suy ra hai dao động vuông pha, như vậy khi x1 đạt giá trị cực đại thì x3 bằng 0.
cách bấm máy để ra phương trình dao động làm như thế nào vậy ạ
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
M x 2 1 O N
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Chọn đáp án D
Khi: E d = 1 3 E ⇒ v = 1 3 v max
⇔ 8 3 = 1 3 4 A ⇒ A = 6 c m
Hai dao động thành phần vuông pha nhau.
Do vậy A = 6 2 − 3 2 = 3 3 c m .