Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
+ t = 0 : v = + v m ax 2 ⇒ x = A 3 2 . Lúc này thế năng đang tăng suy ra x = A 3 2 và vật đi theo chiều dương.
+ thời điểm t : a = a m ax 2 ⇒ x = − A 2
Vòng tròn đơn vị :
Vị trí của vật ở thời điểm t = 0 (M0) và t (Mt) như trên hình vẽ. Dễ dàng tìm được góc quét bằng 150 ° , tương ứng với Δ t = 5 T 12 .
Có
ω
=
a
m
ax
v
m
ax
=
10
π
⇒
T
=
0
,
2
(
s
)
⇒
Δ
t
=
0
,
083
(
s
)
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Đáp án D
Phương pháp: Sử dung̣ đường tròn lương̣ giác
Cách giải:
Theo bài ra ta có:
Thời điểm ban đầu vật ở vị trí (1) có v = v0/2
Khi
vật ở vị trí (2)
Từ hình vẽ xác định được thời điểm vật ở vị trí (2) là 5T/12 = 0,083s
Ở VTCB lò xo dãn: \(\Delta \ell_0=10cm\)
Tần số góc: \(\omega=\sqrt{\dfrac{g}{\Delta\ell_0}}=10(rad/s)\)
Áp dụng công thức: \(v_0^2=v^2+\dfrac{a^2}{\omega^2}\)
\(\Rightarrow v_0^2=20^2+\dfrac{(200\sqrt 3)^2}{10^2}\)
\(\Rightarrow v_0=40(cm/s)\)
Biên độ dao động: \(A=\dfrac{v_0}{\omega}=4cm\)
Tỉ số giữa lực đàn hồi cực đại và cực tiểu:
\(\dfrac{F_{dhmax}}{F_{dhmin}}=\dfrac{k.(\Delta\ell_0+A)}{k.(\Delta\ell_0-A)}=\dfrac{\Delta\ell_0+A}{\Delta\ell_0-A}=\dfrac{10+4}{10-4}=\dfrac{7}{3}\)
Đáp án C
Giả sử phương trình dao động của vật có dạng : x = A cos ( ω t + φ )
ω = a m a x v m a x = 10 π rad / s
Biên độ : A = v m a x ω = 3 10 π m
Vận tốc của vật : v = x' = - ω A si n ( 10 πt + φ ) = - 3 sin ( 10 πt + φ ) m / s
v 0 = - 3 sin φ = 1,5 m/s ⇒ sin φ = - 0 , 5 s và do thế năng đang tăng nên chọn φ = - π 6
Phương trình có hai họ nghiệm 10 πt - π 6 = ± 2 π 3 ± 2 kπ