Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=A\sin(\omega t)+A\cos(\omega t)\)
\(=A\sin(\omega t)+A\sin(\omega t+\dfrac{\pi}{2})\)
\(=2A\sin(\omega t+\dfrac{\pi}{4}).\cos \dfrac{\pi}{4}\)
\(=A\sqrt 2\sin(\omega t+\dfrac{\pi}{4})\)
Vậy biên độ dao động là: \(A\sqrt 2\)
Chọn C.
Hướng dẫn bạn:
- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)
\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)
- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)
Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.
Ta có:
Con lắc thực hiện 100 dao động hết 31,4 (s)
Lại có gốc thời gian là lúc quả cầu có li độ 2cm và đang chuyển động theo chiều dương của trục tọa độ với vận tốc có độ lớn
và
Chọn A
Ta dựa vào tính chất của dao động là vật chuyển động càng nhanh khi càng gần vị trí cân bằng cho nên quãng đường dài nhất DS vật đi được trong thời gian Dt với 0 < Dt < T/2 phải đối xứng qua vị trí cân bằng (hình vẽ)
Với thời gian t = 2T/3 = T/2 + T/6 → S = 2A + ∆S (∆φ = 60o)
Do vậy, tốc độ trung bình lớn nhất của vật thực hiện được trong khoảng thời gian 2T/3 khi vật đi được quảng đường lớn nhất trong khoảng thời gian 2T/3 →∆S phải lớn nhất
→ = 2A.sin(60/2) = A →Smax = 3A
→ tốc độ trung bình lớn nhất = Smax / t = 9A/2