Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\) Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)
chọn B
Chu kì: T = 0,5s
Độ lớn của gia tốc: \(|a| = \omega^2|x|\) nên khi khi \(|a| = \frac{a_{max}}{2}\) thì \(x = \pm\frac{A}{2}\)
Biểu diễn bằng véc tơ quay ta có:
M N x 60 0
Ban đầu véc tơ quay xuất phát tại M, thời điểm gần nhất thỏa mãn điều kiện, véc tơ quay đến N, góc quay 600
Thời gian: \(t = \frac{60}{360}T = \frac{T}{6}\)=0,5/6 = 0,083s
Chu kì: T = 0,5s
Độ lớn của gia tốc: \(|a| = \omega^2|x|\) nên khi khi \(|a| = \frac{a_{max}}{2}\) thì \(x = \pm\frac{A}{2}\)
Biểu diễn bằng véc tơ quay ta có:
M N x 60 0
Ban đầu véc tơ quay xuất phát tại M, thời điểm gần nhất thỏa mãn điều kiện, véc tơ quay đến N, góc quay 600
Thời gian: \(t = \frac{60}{360}T = \frac{T}{6}\)=0,5/6 = 0,083s
Khoảng thời gian vận tốc của vật không vượt quá \(6\pi cm/s\) là \(\frac{\Delta t}{T}=\frac{1}{3}\)
\(\Rightarrow\)Góc quét: \(\Delta\varphi=\frac{2\pi}{T}\frac{T}{3}=\frac{2\pi}{3}\left(rad\right)\)
\(\Rightarrow\) VTLG
-v
\(\Rightarrow\cos\varphi=\cos\left(90-30\right)=\frac{v}{v_{max}}=\frac{1}{2}\Rightarrow v_{max}=12\pi=\)\(\omega A\Rightarrow A=3,6cm\)
Đáp án B