Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Combo 3 câu :)
4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)
\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)
\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)
\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)
\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)
5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)
6/ Áp dụng công thức ở câu 5
Chu kì dao động: \(T=2\pi/\omega=\pi/10(s)\)
Trong thời gian \(\pi/10\)s đầu tiên bằng đúng 1 chu kì, nên quãng đường đi được là 4A = 4.6=24 cm.
a)\(U_M=2Acos\left(\pi\frac{\left(d_2-d_1\right)}{\lambda}\right)\) \(cos\left(\omega t-\pi\frac{d_1+d_2}{\lambda}\right)\)
thay số vào ta đc
\(U_M=\frac{\sqrt{2}}{2}cós\left(20\pi t-\frac{29\pi}{4}\right)\)
b) số cực đại \(\frac{-AB}{\lambda}\le n\le\frac{AB}{\lambda}\)
nên \(-2,75\le n\le2,75\)
có 5 giá trị n nguyên, vậy số cực đại là 5
số cực tiểu \(\frac{-AB}{\lambda}-\frac{1}{2}\le n\le\frac{AB}{2}-\frac{1}{2}\)
thay số tương tự nhé
ừ thì bước sóng bằng 8cm đúng rồi
còn d2 với d1 thì k quan trọng đâu, lấy cái nào trừ cái nào cũng đc
Ta có
Chọn A v m a x = ω A ⇒ ω = v m a x A