Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
M 4 -4 -2 O
Biểu diễn dao động bằng véc tơ quay, ban đầu véc tơ quay ở M, quay ngược chiều kim đồng hồ.
Như vậy, khi vật đi quãng đường 2cm thì nó đến O, là vị trí cân bằng, vận tốc cực đại.
\(v_{max}=\omega A=20.4=80cm/s\)
Chọn C.
Tốc độ trung bình \(v = \frac{\text{quãng đường đi được}}{t} \)
Vời thời gian t = 1,6s là không đối tức là \(v_{min} <=> S_{min}\)
Ta có: \(T = \frac{60s}{50} = 1,2s ; A = \frac{16}{2} = 8cm.\)
Nhận xét \(t = 1,6 > T/2 = 0.6 \) nên ta tách: \(t = 2.0,6+0.4 = 2.t_1+t_2\)
Ta sẽ đi tìm quãng đường nhỏ nhất ứng với thời gian \(t_1 = 0.6 s\). Để tìm được quãng đường nhỏ nhất ứng với \(t_1 = 0.6 s\) ta sẽ dùng đường tròn và quỹ đạo của vật sẽ lấy vị trí biên làm trung điểm. Tức là
Góc quay đương ưng với \(t_1 = 0.6 s\) là \(\varphi _1 = t_1 \omega = 0.6\frac{2\pi}{1,2} = \pi.\) Cung quay được sẽ lấy biên làm trung điểm tức là cung \(\stackrel\frown{MaN} = \pi\)
π/2 π/2 A M a N
=> \(S_{1min} = 2. A. (1)\) (2 lần đoạn màu đỏ trên hình ứng với đi từ N đến biên A rồi từ biên A đến điểm M)
Chú ý là quãng đường đường đi được trong t = T/2 thì luôn luôn là 2A. Nên có thể không cần tính mà áp dụng luôn.
Tương tự ta sẽ tìm quãng đường nhỏ nhất ứng với thời gian \(t_2 = 0.4 s\) => \(\varphi _2 = t_2 \omega = 0.4\frac{2\pi}{1,2} = \frac{2\pi}{3}.\)
A 2 A a π/3 π/3 P Q
=> \(S_{2min} = 2. (A - \frac{A}{2} ). (2)\) (2 lần đoạn màu đỏ trên hình ứng với đi từ Q đến biên A rồi từ biên A đến điểm P)
Từ (1) và (2) ta thu được \(v_{min} = \frac{S_{min}}{t} = \frac{2S_{1}+S_2}{t} = \frac{4A+2(A-\frac{A}{2})}{1,6} = \frac{A. (6-1)}{1,6} =25 cm/s.\)
Như vậy đáp án thu được là D. 25cm/s.