K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Áp dụng công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega^2} \Rightarrow\) \(8^2+\frac{12^2}{\omega^2} = 6^2+\frac{16^2}{\omega^2} \Rightarrow \omega = 2 \ (rad/s) \Rightarrow f = \frac{1}{\pi} \ Hz\)

7 tháng 9 2017

Vì sao w=2 vậy ạ

27 tháng 10 2015

Áp dụng: 

\(A^2 = x^2 + \frac{v^2}{\omega^2} = 3^2+\frac{40^2}{\omega^2}\) (1)

+ Qua VTCB, vận tốc cực đại: \(v_{max} = \omega A \Rightarrow 50 = \omega A\) (2)

Từ (1) và (2) \(\Rightarrow \omega = 10 \ (rad/s); A = 5 \ cm\)

+ Khi vận tốc đạt giá trị v3 = 30cm/s, ta có: \(x = \pm\sqrt{A^2-\frac{v^2}{\omega^2}} = \pm 4 \ cm\)

30 tháng 5 2017

dap an c


31 tháng 5 2017

Làm tương tự bài này Câu hỏi của Nguyễn Lê Quỳnh Anh - Vật lý lớp 12 | Học trực tuyến

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

31 tháng 5 2017

Áp dụng công thức: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2,5^2+\dfrac{(50\sqrt 3)^2}{\omega^2}=(2,5\sqrt 3)^2+\dfrac{50^2}{\omega^2}\)

\(\Rightarrow \omega = 20(rad/s)\)

\(A=5cm\)

1 tháng 1 2017

PAP I HAVE A PEN....oho

1 tháng 1 2017

PIPIEIPI

23 tháng 8 2016

Khi vật qua VTCB \Rightarrow 
v_{Max} = \omega A = 1 (cm/s)
a_{Max} = \omega^2 A = 1,57 \approx \frac{\pi}{2} (cm/s^2)
\frac{a_{Max}}{v_{Max}} = \frac{\omega ^2 A}{\omega A} = \omega = \frac{\pi}{2} (rad/s)
\Rightarrow T = \frac{2 \pi}{\omega } = 4 (s)

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)