K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

ABAC=52⇒AB=52ACABAC=52⇒AB=52AC

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

AB2+AC2=BC2AB2+AC2=BC2

=>AB2+AC2=262 (1)

Thay AB=52ACAB=52AC vào (1) ta được:

(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676

=>294AC2=676⇒AC2≈93,2⇒AC≈9,7

13 tháng 5 2021

AB/AC = 5/2 ⇒ AB = 5/2AC

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)

⇒ AC ≈ 9,7(cm)

=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)

29 tháng 2 2020

A K M I C H B N

a)

Ta có nối K với M 

=> Xét t/gMCK và t/gMHC ta có:

CK=CH (gt) hay ^KCM=^MCH (gt)

MC (cạnh chung)

=>t/gMCK = t/gMCH (c.g.c)

=>MK=MH ( tương ứng)

đpcm.

b) Tiếp tục nối K và H

Gọi I là giao điểm của CM và KH

Xét t/gICK và t/gICH ta có:

CK=CH (gt) hay ^HCM=^CMK  (gt)

CI (cạnh chung)

=>t/gICK=t/gICH (c.g.c)

=>^CIK=^CIH( tương ứng)

Mà ^CIK+^CIH=180o( góc kề bù)

=>^CIK=^CIH=90o

=>CI_|_HK 

=>CM_|_HK

đpcm.

c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)

Vì ^KCM+^MCN=90o

=>^MCN=90o-^KCM

=>^MCN=90o-35o

=>^MCN=65o(2)

Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.

đpcm.

29 tháng 2 2020

Phạm Mai Oannh , tại sao góc CMH = góc CMN =65 độ vậy bn

29 tháng 6 2021

Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?

A. 10 cm, 22 cm

B. 10 cm, 24 cm

C. 12 cm, 24 cm

D. 15 cm, 24 cm

29 tháng 6 2021

Gọi độ dài 2 cạnh là \(x\)\(y\)\(x\)\(y\)> 0 )

Theo định lý Pitago ta có : \(\frac{x}{5}=\frac{y}{12}\)\(\Rightarrow\)\(\frac{x^2}{25}=\frac{y^2}{144}=\frac{x^2+y^2}{25+144}\)

\(\frac{676}{169}=4\)

\(\Leftrightarrow\)\(x^2=25.4\)

\(\Leftrightarrow\)\(x^2=100\)

\(\Leftrightarrow\)\(x=10\)cm

Ta lại có :

\(\Leftrightarrow\)\(y^2=144.4\)

\(\Leftrightarrow\)\(y^2=576\)

\(\Leftrightarrow\)\(y=24\)

Vậy ...................

=> Chọn B

Hok tốt

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0

trả lời 

Hai cạnh góc vuông của một tam giác vuông có độ dài lần lượt bằng 3cm và 4cm.
Độ dài cạnh huyền của tam giác đó bằng.....5 cm.......  cm.

 hc tốt

29 tháng 5 2017

a) Gọi \(\Delta\)ABC vuông cân tại A có BC = 2 cm

Áp dụng định lý Pytago cho \(\Delta\)ABC vuông cân tại A ta có :

AB2 + AC2 = BC2

AB2 + AB2 = 2 ( Vì AB = AC)

2.AB2 = 4

=> AB2 = 2

=> AB = \(\sqrt{2}\)

Vậy AB = AC = \(\sqrt{2}\)(cm)

b) Gọi \(\Delta\)KFC vuông cân tại K có FC = \(\sqrt{2}\)(cm)

Áp dụng định lý Pytago cho \(\Delta\)KFC vuông cân tại K ta có :

FC2 = KF2 + KC2

(\(\sqrt{2}\))2 = 2. KF2 (vì KC = KF)

=> 2 = 2 . KF2

=> KF2 = 1

=> KF = 1 (cm)

Vậy KC = KF = 1 (cm)