Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chọn ra một cái quần hoặc một csai áo hoặc một cái cà vạt thì số cách khác nhau là:
\(C^1_4.C^1_6.C^1_3=4.6.3=72\)(cách)
Nếu chọn một cái quần thì sẽ có 4 cách.
Nếu chọn một cái áo thì sẽ có 6 cách.
Nếu chọn một cái cà vạt thì sẽ có 3 cách.
Theo qui tắc cộng, ta có 4 + 6 + 3 = 13 cách chọn.
Chọn đáp án A.
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
Đáp án : A
Nếu chọn một cái quần thì sẽ có 5 cách.
Nếu chọn một cái áo thì sẽ có 7 cách.
Nếu chọn một cái cà vạt thì sẽ có 4 cách.
Theo qui tắc cộng, ta có 5+7+4=16 cách chọn.
Để chọn một bộ "quần-áo-cà vạt", ta có:
Có 4 cách chọn quần.
Có 6 cách chọn áo.
Có 3 cách chọn cà vạt.
Vậy theo qui tắc nhân ta có : 4.6.3 = 72 cách.
Chọn đáp án B.