Một mạch dao động LC lí tưởng có chu kì 2   μ s . T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Đáp án A

14 tháng 12 2015

\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)

Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn

U 0 +U 0 2

\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)

\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)

 

31 tháng 5 2016

mình bị nhầm ở đáp án

A. \(\frac{4}{3}\mu s\)  các câu khác cũng như vậy nhé

31 tháng 5 2016

Năng lượng của mạch dao động W \(\frac{Q_0^2}{2C}=\frac{LI^2_0}{2}\) → chu kì dao động của mạch

\(T=2\pi\sqrt{LC}=2\pi\frac{Q_0}{I_0}=16.10^{-6}\left(s\right)=16\mu s\).Thời gian điện tích giảm từ Qdến Q0/2 

q = Q0cos \(\frac{2\pi}{T}t=\frac{Q_0}{2}\rightarrow\frac{2\pi}{T}t=\frac{\pi}{3}\rightarrow t=\frac{T}{6}=\frac{8}{3}\mu s\)

→ C

14 tháng 1 2016

\(I_0 = q_0.\omega = 4.10^{-12}.10^7= 4.10^{-5}A.\)
\(\left(\frac{q}{q_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

=> \(\left(\frac{i}{I_0}\right)^2=1-\left(\frac{q}{q_0}\right)^2 = 1 - \left(\frac{2.10^{-12}}{4.10^{-12}}\right)^2= \frac{3}{4}.\)

=> \(i = I_0.\frac{\sqrt{3}}{2}=2\sqrt{3}.10^{-5}A.\)

14 tháng 1 2016

Do u vuông pha với i nên áp dụng công thức độc lập thời gian:

\((\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)

25 tháng 2 2016

Điện tích trên tụ giảm từ cực đại xuống nửa cực đại là \(\dfrac{T}{6}=2.10^-4s\Rightarrow T = 12.10^{-4} s\)

Năng lượng điện giảm từ cực đại xuống nửa cực đại ứng với điện tích giảm từ \(Q_0\) (cực đại) xuống \(\dfrac{Q_0}{\sqrt 2}\)

Biểu diễn bằng véc tơ quay ta thấy véc tơ quay đã quay \(45^0\), ứng với thời gian là: \(\dfrac{T}{8}=1,5.10^{-4}s\)

Chọn A

19 tháng 1 2019

24 tháng 8 2016

Ta có : \(\frac{T_{W_{\text{đ}}}}{6}=1,5.10^{-4}\)

\(\Rightarrow\frac{T_q}{6}=\frac{2T_{W_{\text{đ}}}}{6}=3.10^{-4}\)

Vậy chọn D.

31 tháng 7 2016

Ta có: \(\frac{1}{2}CU^2_{max}=\frac{1}{2}Li^2+\frac{1}{2}C^2_u\Rightarrow i=\sqrt{\frac{C}{L}\left(U^2_{max}-u^2\right)}\)\(=0,0447A=44,7mA\)

chọn D

31 tháng 7 2016

\(\frac{1}{2}Li^2+\frac{1}{2}Cu^2=\frac{1}{2}CU_0^2\Rightarrow i=44,7mA\)

=> D đúng

20 tháng 7 2016

Ta có: \(W=W_t+W_d\)

\(\Leftrightarrow W_t=W_{dmax}-W_d\)

\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)

\(=5.10^{-5}J\)

25 tháng 1 2016

Hướng dẫn giải:

Thời gian để tụ phòng hết điện tích (q0 -> 0) được tính như sau

\(t = \frac{\varphi}{\omega}=\frac{\pi/2}{2\pi/T}=\frac{T}{4} \) => \(T = 4.2.10^{-6}= 8.10^{-6}s.\)

\(I_0 = q_0.\omega = 10^{-8}.\frac{2\pi}{8.10^{-6}}= 2,5.\pi.10^{-3} => I = \frac{I_0}{\sqrt{2}} \approx 5,55 mA.\)

25 tháng 12 2017

huhukhó không làm nổihuhu