Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
\(W= W_{Cmax}=W_C+W_L\)
=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)
\(L = \frac{1}{\omega^2 C}=0,625H.\)
\(i = 0,02. \cos8000.\frac{\pi}{48000}= 0,02.\cos\frac{\pi}{6}= 0,02.\frac{\sqrt{3}}{2}\)
\(W_C=\frac{1}{2}L(I_0^2-i^2) = 3,125.10^{-5}J.\)
Vì có điện trở thuần nên dao động trong mạch tắt dần do tỏa nhiệt ở điện trở. Để duy trì dao động điều hòa phải bổ sung cho mạch một năng lượng có công suất đủ bì vào phần năng lượng hao phí do tỏa nhiệt (hiệu ứng J un) trên điện trở, phần này có công suất là: \(\Delta P=I^2.R\)
Khi cùng cấp năng lượng đó, ta có: \(\frac{1}{2}CU^2_0=\frac{1}{2}LI^2_0\)
Mà: \(^{U=\frac{U_0}{\sqrt{2}}}_{I=I_{\frac{0}{\sqrt{2}}}}\)} \(\rightarrow I^2=\frac{C}{L}.U^2\)
\(P=I^2R=\frac{CR}{L}U^2=\frac{CRU^2_0}{2L}\)
\(\Rightarrow P=137\mu W\)
chọn B
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Cứ sau những khoảng thời gian \(\frac{T}{4}\) s thì năng lượng trong tụ điện và trong cuộn cảm lại bằng nhau.
\(=> \frac{T}{4}=1\mu s=> T = 4.10^{-6}s.\)
\(W_{Cmax} = \frac{1}{2}CU_0^2=> C = \frac{2W_{Cmax}}{U_0^2} = 1,25.10^{-7}F.\)
\(T = 2\pi .\sqrt{LC}=> L = \frac{T^2}{4\pi^2C}=\frac{32}{\pi^2}\mu H.\)
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?