Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cảm kháng gấp đôi dung kháng → Z L = 2 Z C
Điện áp hiệu dụng ở hai đầu tụ điện và hai đầu điện trở bằng nhau Z C = R . Ta chuẩn hóa R = 1 → Z C = 1 v à Z L = 2
Độ lệch pha tan φ = Z L − Z C R = 2 − 1 1 = 1 ⇒ φ = π 4
Đáp án A.
Đo điện áp giữa hai đầu tụ điện và 2 đầu điện trở số chỉ vôn kế như nhau
\(\Rightarrow U_C=U_R\)
\(Z_L=2Z_C\Rightarrow U_L=2U_C\)
\(\tan\varphi=\frac{U_L-U_C}{U_R}=\frac{2U_C-U_C}{U_C}=1\)
\(\Rightarrow\varphi=\frac{\pi}{4}\)
Như vậy điện áp 2 đầu đoạn mạch lệch pha \(\frac{\pi}{4}\)so với dòng điện
Chọn A.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Điện áp giữ hai đầu đoạn mạch lệch pha \(\frac{\pi}{3}\) so với cường độ dòng điện:
\(\Rightarrow\cos\left(\frac{\pi}{3}\right)=\frac{R}{Z}\Leftrightarrow Z=80\Omega\)
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
\(i=2cos\left(100\pi t-\frac{3\pi}{4}\right)\)
\(\varphi=\varphi_u-\varphi_i=\frac{3\pi}{4}\Rightarrow tan\varphi=-1\)
nên mạch có tính dung kháng suy ra mạch gồm R và C
ta có \(tan\varphi=\frac{-Z_c}{R}=-1\Rightarrow Z_c=R\)(1)
lại có \(Z=\sqrt{R^2+Z_C^2}=\frac{U}{I}=50\)(2)
từ 1,2 suy ra R=Zc=5 \(\Omega\)
Đáp án A