Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên một đường tròn định hướng, cặp cung lượng giác có cùng điểm đầu và điểm cuối nếu chúng chúng hơn kém nhau k .2 π (k nguyên) hay chính là hơn kém nhau k . 360 o (k nguyên)
ta có π 3 − − 35 π 3 = 12 π = 6.2 π
Do đó, cặp cung lượng giác này có cùng điểm đầu và điểm cuối.
Đáp án A
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
1) \(\left(x-1\right)\left(x+2\right)< 0\Leftrightarrow-2< x< 1\)
vậy \(x=-1;0\)
2) \(\left(x+1\right)\left(2x-4\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-1\end{matrix}\right.\)
vậy \(x=Z\backslash\left\{1;0\right\}\)
3) \(\left(x^2+1\right)\left(x^2-4\right)\le0\)
vì \(x^2+1\ne0\)
\(\Leftrightarrow x^2-4\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le2\)
vậy \(x=-2;-1;0;1;2\)
4) \(\left|x\right|\left(x^2-1\right)\ge0\)
ta có \(\left|x\right|\ge0\)
\(\Leftrightarrow x^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
vậy \(x=Z\backslash\left\{0\right\}\)
1: (x-1)(x+2)<0
=>-2<x<1
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
2: \(\left(x+1\right)\cdot\left(2x-4\right)>=0\)
=>x>=2 hoặc x<=-1
mà x là số nguyên
nên x=Z\{1;0}
3: \(\Leftrightarrow x^2-4< =0\)
=>-2<=x<=2
mà x là số nguyên
nên \(x\in\left\{-2;-1;0;1;2\right\}\)
4: =>(x2-1)>=0
=>x>=1 hoặc x<=-1
=>x=Z\{0}
b: \(\left|\overrightarrow{GB}\right|=GB=GA=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
c: \(\left|\overrightarrow{GA}+\overrightarrow{GB}\right|\)
\(=\sqrt{GA^2+GB^2+2\cdot GA\cdot GB\cdot cos\left(GA,GB\right)}\)
\(=\sqrt{2\cdot\left(\dfrac{a\sqrt{3}}{3}\right)^2+2\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{-1}{2}}\)
\(=\sqrt{2\cdot\dfrac{1}{3}\cdot a^2-\dfrac{a^2}{3}}=\sqrt{\dfrac{a^2}{3}}\)
Một cung lượng giác trên đường tròn định hướng có độ dài bằng bán kính thì có số đo 1 rad hoặc -1 rad.
Do đó, một cung lượng giác trên đường tròn định hướng có độ dài bằng hai lần bán kính thì số đo theo rađian của cung đó là 2 rad hoặc – 2 rad.
Suy ra B đúng.